

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	Google Cloud Bigtable 0.0.1 documentation

Google Cloud Bigtable: Python

This library is an alpha implementation of Google Cloud Bigtable [https://cloud.google.com/bigtable/docs/]
and is closely related to gcloud-python [http://gcloud-python.readthedocs.org/en/latest/].

API requests are sent to the Google Cloud Bigtable API via RPC over HTTP/2.
In order to support this, we’ll rely on gRPC [http://www.grpc.io/]. We are working with the gRPC
team to rapidly make the install story more user-friendly.

Get started by learning about the
Client on the Base for Everything
page. If you have install questions, check out the project’s README [https://github.com/dhermes/gcloud-python-bigtable/blob/master/README.md].

In the hierarchy of API concepts

	a Client owns a
Cluster

	a Cluster owns a
Table

	a Table owns a
ColumnFamily

	a Table owns a
Row
(and all the cells in the row)

Indices and tables

	Index

	Module Index

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Base for Everything

To use the API, the Client
class defines a high-level interface which handles authorization
and creating other objects:

from gcloud_bigtable.client import Client
client = Client()

Long-lived Defaults

When creating a Client, the
user_agent and timeout_seconds arguments have sensible
defaults
(DEFAULT_USER_AGENT and
DEFAULT_TIMEOUT_SECONDS).
However, you may over-ride them and these will be used throughout all API
requests made with the client you create.

Authorization

This will use the Google Application Default Credentials [https://developers.google.com/identity/protocols/application-default-credentials] if
you don’t pass any credentials of your own. If you are familiar with the
oauth2client [http://oauth2client.readthedocs.org/en/latest/] library, you can create a credentials object and
pass it directly:

client = Client(credentials=credentials)

In addition, the
from_service_account_json()
and
from_service_account_p12()
factories can be used if you know the specific type of credentials you’d
like to use.

Project ID

Tip

Be sure to use the Project ID, not the Project Number.

You can also explicitly provide the project_id rather than relying
on the inferred value:

client = Client(project_id='my-cloud-console-project')

When implicit, the value is inferred from the environment in the following
order:

	The GCLOUD_PROJECT environment variable

	The Google App Engine application ID

	The Google Compute Engine project ID (from the metadata server)

Admin API Access

If you’ll be using your client to make Cluster Admin [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/tree/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1] and Table Admin [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/tree/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1]
API requests, you’ll need to pass the admin argument:

client = Client(admin=True)

Read-Only Mode

If on the other hand, you only have (or want) read access to the data,
you can pass the read_only argument:

client = Client(read_only=True)

This will ensure that the
READ_ONLY_SCOPE is used
for API requests (so any accidental requests that would modify data will
fail).

Next Step

After a Client, the next highest-level
object is a Cluster. You’ll need
one before you can interact with tables or data.

Head next to learn about the Cluster Admin API.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Client

Parent client for calling the Google Cloud Bigtable API.

This is the base from which all interactions with the API occur.

In the hierarchy of API concepts

	a Client owns a Cluster

	a Cluster owns a Table

	a Table owns a
ColumnFamily

	a Table owns a Row
(and all the cells in the row)

	
gcloud_bigtable.client.ADMIN_SCOPE = 'https://www.googleapis.com/auth/cloud-bigtable.admin'

	Scope for interacting with the Cluster Admin and Table Admin APIs.

	
gcloud_bigtable.client.CLUSTER_ADMIN_HOST = 'bigtableclusteradmin.googleapis.com'

	Cluster Admin API request host.

	
gcloud_bigtable.client.CLUSTER_ADMIN_PORT = 443

	Cluster Admin API request port.

	
class gcloud_bigtable.client.Client(credentials=None, project_id=None, read_only=False, admin=False, user_agent='gcloud-bigtable-python', timeout_seconds=10)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Client for interacting with Google Cloud Bigtable API.

	Parameters:	
	credentials (OAuth2Credentials [http://oauth2client.readthedocs.org/en/latest/source/oauth2client.client.html#oauth2client.client.OAuth2Credentials] or
NoneType [https://docs.python.org/library/types.html#types.NoneType]) – (Optional) The OAuth2 Credentials to use for this
cluster. If not provided, defaulst to the Google
Application Default Credentials.

	project_id (str [https://docs.python.org/library/functions.html#str] or unicode [https://docs.python.org/library/functions.html#unicode]) – (Optional) The ID of the project which owns the
clusters, tables and data. If not provided, will
attempt to determine from the environment.

	read_only (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) Boolean indicating if the data scope should be
for reading only (or for writing as well). Defaults to
False [https://docs.python.org/library/constants.html#False].

	admin (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) Boolean indicating if the client will be used to
interact with the Cluster Admin or Table Admin APIs. This
requires the ADMIN_SCOPE. Defaults to False [https://docs.python.org/library/constants.html#False].

	user_agent (str [https://docs.python.org/library/functions.html#str]) – (Optional) The user agent to be used with API request.
Defaults to DEFAULT_USER_AGENT.

	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out. If not
passed, defaults to
DEFAULT_TIMEOUT_SECONDS.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if both read_only
and admin are True [https://docs.python.org/library/constants.html#True]

	
cluster(zone, cluster_id, display_name=None, serve_nodes=3)[source]

	Factory to create a cluster associated with this client.

	Parameters:	
	zone (str [https://docs.python.org/library/functions.html#str]) – The name of the zone where the cluster resides.

	cluster_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the cluster.

	display_name (str [https://docs.python.org/library/functions.html#str]) – (Optional) The display name for the cluster in the
Cloud Console UI. (Must be between 4 and 30
characters.) If this value is not set in the
constructor, will fall back to the cluster ID.

	serve_nodes (int [https://docs.python.org/library/functions.html#int]) – (Optional) The number of nodes in the cluster.
Defaults to 3.

	Return type:	Cluster

	Returns:	The cluster owned by this client.

	
cluster_stub

	Getter for the gRPC stub used for the Cluster Admin API.

	Return type:	grpc.early_adopter.implementations._Stub

	Returns:	A gRPC stub object.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the current
client is not an admin client or if it has not been
start()-ed.

	
credentials

	Getter for client’s credentials.

	Return type:	OAuth2Credentials [http://oauth2client.readthedocs.org/en/latest/source/oauth2client.client.html#oauth2client.client.OAuth2Credentials]

	Returns:	The credentials stored on the client.

	
data_stub

	Getter for the gRPC stub used for the Data API.

	Return type:	grpc.early_adopter.implementations._Stub

	Returns:	A gRPC stub object.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the current
client has not been start()-ed.

	
classmethod from_service_account_json(json_credentials_path, project_id=None, read_only=False, admin=False)[source]

	Factory to retrieve JSON credentials while creating client object.

	Parameters:	
	json_credentials_path (str [https://docs.python.org/library/functions.html#str]) – The path to a private key file (this file
was given to you when you created the
service account). This file must contain
a JSON object with a private key and
other credentials information (downloaded
from the Google APIs console).

	project_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the project which owns the clusters,
tables and data. Will be passed to Client
constructor.

	read_only (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the data scope should be
for reading only (or for writing as well). Will be
passed to Client constructor.

	admin (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the client will be used to
interact with the Cluster Admin or Table Admin APIs. Will
be passed to Client constructor.

	Return type:	Client

	Returns:	The client created with the retrieved JSON credentials.

	
classmethod from_service_account_p12(client_email, private_key_path, project_id=None, read_only=False, admin=False)[source]

	Factory to retrieve P12 credentials while creating client object.

Note

Unless you have an explicit reason to use a PKCS12 key for your
service account, we recommend using a JSON key.

	Parameters:	
	client_email (str [https://docs.python.org/library/functions.html#str]) – The e-mail attached to the service account.

	private_key_path (str [https://docs.python.org/library/functions.html#str]) – The path to a private key file (this file was
given to you when you created the service
account). This file must be in P12 format.

	project_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the project which owns the clusters,
tables and data. Will be passed to Client
constructor.

	read_only (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the data scope should be
for reading only (or for writing as well). Will be
passed to Client constructor.

	admin (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the client will be used to
interact with the Cluster Admin or Table Admin APIs. Will
be passed to Client constructor.

	Return type:	Client

	Returns:	The client created with the retrieved P12 credentials.

	
list_clusters(timeout_seconds=None)[source]

	Lists clusters owned by the project.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on client.

	Return type:	tuple [https://docs.python.org/library/functions.html#tuple]

	Returns:	A pair of results, the first is a list of Cluster s
returned and the second is a list of strings (the failed
zones in the request).

	
list_zones(timeout_seconds=None)[source]

	Lists zones associated with project.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on client.

	Return type:	list [https://docs.python.org/library/functions.html#list]

	Returns:	The names (as str [https://docs.python.org/library/functions.html#str]) of the zones

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if one of the
zones is not in OK state.

	
operations_stub

	Getter for the gRPC stub used for the Operations API.

	Return type:	grpc.early_adopter.implementations._Stub

	Returns:	A gRPC stub object.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the current
client is not an admin client or if it has not been
start()-ed.

	
project_id

	Getter for client’s project ID.

	Return type:	str [https://docs.python.org/library/functions.html#str]

	Returns:	The project ID stored on the client.

	
project_name

	Project name to be used with Cluster Admin API.

Note

This property will not change if project_id does not, but the
return value is not cached.

The project name is of the form

"projects/{project_id}"

	Return type:	str [https://docs.python.org/library/functions.html#str]

	Returns:	The project name to be used with the Cloud Bigtable Admin
API RPC service.

	
start()[source]

	Prepare the client to make requests.

Activates gRPC contexts for making requests to the Bigtable
Service(s).

	
stop()[source]

	Closes all the open gRPC clients.

	
table_stub

	Getter for the gRPC stub used for the Table Admin API.

	Return type:	grpc.early_adopter.implementations._Stub

	Returns:	A gRPC stub object.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the current
client is not an admin client or if it has not been
start()-ed.

	
gcloud_bigtable.client.DATA_API_HOST = 'bigtable.googleapis.com'

	Data API request host.

	
gcloud_bigtable.client.DATA_API_PORT = 443

	Data API request port.

	
gcloud_bigtable.client.DATA_SCOPE = 'https://www.googleapis.com/auth/cloud-bigtable.data'

	Scope for reading and writing table data.

	
gcloud_bigtable.client.DEFAULT_TIMEOUT_SECONDS = 10

	The default timeout to use for API requests.

	
gcloud_bigtable.client.DEFAULT_USER_AGENT = 'gcloud-bigtable-python'

	The default user agent for API requests.

	
gcloud_bigtable.client.PROJECT_ENV_VAR = 'GCLOUD_PROJECT'

	Environment variable used to provide an implicit project ID.

	
gcloud_bigtable.client.READ_ONLY_SCOPE = 'https://www.googleapis.com/auth/cloud-bigtable.data.readonly'

	Scope for reading table data.

	
gcloud_bigtable.client.TABLE_ADMIN_HOST = 'bigtabletableadmin.googleapis.com'

	Table Admin API request host.

	
gcloud_bigtable.client.TABLE_ADMIN_PORT = 443

	Table Admin API request port.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Cluster Admin API

After creating a Client, you can
interact with individual clusters, groups of clusters or available
zones for a project.

List Clusters

If you want a comprehensive list of all existing clusters, make a
ListClusters [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L44-L46] API request with
Client.list_clusters():

clusters = client.list_clusters()

List Zones

If you aren’t sure which zone to create a cluster in, find out
which zones your project has access to with a ListZones [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L33-L35] API request
with Client.list_zones():

zones = client.list_zones()

You can choose a string [https://docs.python.org/library/functions.html#str] from among the result to pass to
the Cluster constructor.

Cluster Factory

To create a Cluster object:

cluster = client.cluster(zone, cluster_id,
 display_name=display_name,
 serve_nodes=3)

Both display_name and serve_nodes are optional. When not provided,
display_name defaults to the cluster_id value and serve_nodes
defaults to the minimum allowed: 3.

Even if this Cluster already
has been created with the API, you’ll want this object to use as a
parent of a Table just as the
Client is used as the parent of
a Cluster.

Create a new Cluster

After creating the cluster object, make a CreateCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L66-L68] API request
with create():

cluster.display_name = 'My very own cluster'
cluster.create()

If you would like more than the minimum number of nodes (3) in your cluster:

cluster.serve_nodes = 10
cluster.create()

Check on Current Operation

Note

When modifying a cluster (via a CreateCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L66-L68], UpdateCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L93-L95] or
UndeleteCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L126-L128] request), the Bigtable API will return a long-running
Operation [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/longrunning/operations.proto#L73-L102]. This will be stored on the object after each of
create(),
update() and
undelete() are called.

You can check if a long-running operation (for a
create(),
update() or
undelete()) has finished
by making a GetOperation [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/bfe4138f04bf3383a558152e4333112cdd13d5b0/bigtable-protos/src/main/proto/google/longrunning/operations.proto#L43-L45] request with
operation_finished():

>>> cluster.operation_finished()
True

Note

The operation data is stored in protected fields on the
Cluster:
_operation_type, _operation_id and _operation_begin.
If these are unset, then
operation_finished()
will fail. Also, these will be removed after a long-running operation
has completed (checked via this method). We could easily surface these
properties publicly, but it’s unclear if end-users would need them.

Get metadata for an existing Cluster

After creating the cluster object, make a GetCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L38-L40] API request
with reload():

cluster.reload()

This will load serve_nodes and display_name for the existing
cluster in addition to the cluster_id, zone and project_id
already set on the Cluster object.

Update an existing Cluster

After creating the cluster object, make an UpdateCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L93-L95] API request
with update():

client.display_name = 'New display_name'
cluster.update()

Delete an existing Cluster

Make a DeleteCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L109-L111] API request with
delete():

cluster.delete()

Undelete a deleted Cluster

Make an UndeleteCluster [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/e6fc386d9adc821e1cf5c175c5bf5830b641eb3f/bigtable-protos/src/main/proto/google/bigtable/admin/cluster/v1/bigtable_cluster_service.proto#L126-L128] API request with
undelete():

cluster.undelete()

Next Step

Now we go down the hierarchy from
Cluster to a
Table.

Head next to learn about the Table Admin API.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Cluster

User friendly container for Google Cloud Bigtable Cluster.

	
class gcloud_bigtable.cluster.Cluster(zone, cluster_id, client, display_name=None, serve_nodes=3)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Representation of a Google Cloud Bigtable Cluster.

We can use a Cluster to:

	reload() itself

	create() itself

	Check if an operation_finished() (each of create(),
update() and undelete() return with long-running operations)

	update() itself

	delete() itself

	undelete() itself

Note

For now, we leave out the properties hdd_bytes and ssd_bytes
(both integers) and also the default_storage_type (an enum)
which if not sent will end up as data_pb2.STORAGE_SSD.

	Parameters:	
	zone (str [https://docs.python.org/library/functions.html#str]) – The name of the zone where the cluster resides.

	cluster_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the cluster.

	client (client.Client) – The client that owns the cluster. Provides
authorization and a project ID.

	display_name (str [https://docs.python.org/library/functions.html#str]) – (Optional) The display name for the cluster in the
Cloud Console UI. (Must be between 4 and 30
characters.) If this value is not set in the
constructor, will fall back to the cluster ID.

	serve_nodes (int [https://docs.python.org/library/functions.html#int]) – (Optional) The number of nodes in the cluster.
Defaults to 3.

	
client

	Getter for cluster’s client.

	Return type:	client.Client

	Returns:	The client stored on the cluster.

	
create(timeout_seconds=None)[source]

	Create this cluster.

Note

Uses the project_id, zone and cluster_id on the current
Cluster in addition to the display_name and
serve_nodes. If you’d like to change them before creating,
reset the values via

cluster.display_name = 'New display name'
cluster.cluster_id = 'i-changed-my-mind'

before calling create().

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

	
delete(timeout_seconds=None)[source]

	Delete this cluster.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

	
classmethod from_pb(cluster_pb, client)[source]

	Creates a cluster instance from a protobuf.

	Parameters:	
	cluster_pb (bigtable_cluster_data_pb2.Cluster) – A cluster protobuf object.

	client (client.Client) – The client that owns the cluster.

	Return type:	Cluster

	Returns:	The cluster parsed from the protobuf response.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the cluster
name does not match _CLUSTER_NAME_RE or if the parsed
project ID does not match the project ID on the client.

	
list_tables(timeout_seconds=None)[source]

	List the tables in this cluster.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

	Return type:	list of Table

	Returns:	The list of tables owned by the cluster.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if one of the
returned tables has a name that is not of the expected format.

	
name

	Cluster name used in requests.

Note

This property will not change if zone and cluster_id do not,
but the return value is not cached.

The cluster name is of the form

"projects/{project_id}/zones/{zone}/clusters/{cluster_id}"

	Return type:	str [https://docs.python.org/library/functions.html#str]

	Returns:	The cluster name.

	
operation_finished(timeout_seconds=None)[source]

	Check if the current operation has finished.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

	Return type:	bool [https://docs.python.org/library/functions.html#bool]

	Returns:	A boolean indicating if the current operation has completed.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if there is no
current operation set.

	
project_id

	Getter for cluster’s project ID.

	Return type:	str [https://docs.python.org/library/functions.html#str]

	Returns:	The project ID for the cluster (is stored on the client).

	
reload(timeout_seconds=None)[source]

	Reload the metadata for this cluster.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

	
table(table_id)[source]

	Factory to create a table associated with this cluster.

	Parameters:	table_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the table.

	Return type:	Table

	Returns:	The table owned by this cluster.

	
timeout_seconds

	Getter for cluster’s default timeout seconds.

	Return type:	int [https://docs.python.org/library/functions.html#int]

	Returns:	The timeout seconds default stored on the cluster’s client.

	
undelete(timeout_seconds=None)[source]

	Undelete this cluster.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

	
update(timeout_seconds=None)[source]

	Update this cluster.

Note

Updates the display_name and serve_nodes. If you’d like to
change them before updating, reset the values via

cluster.display_name = 'New display name'
cluster.serve_nodes = 3

before calling update().

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
cluster.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Table Admin API

After creating a Cluster, you can
interact with individual tables, groups of tables or column families within
a table.

List Tables

If you want a comprehensive list of all existing tables in a cluster, make a
ListTables [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L40-L42] API request with
Cluster.list_tables():

tables = cluster.list_tables()

Table Factory

To create a Table object:

table = cluster.table(table_id)

Even if this Table already
has been created with the API, you’ll want this object to use as a
parent of a ColumnFamily
or Row.

Create a new Table

After creating the table object, make a CreateTable [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L35-L37] API request
with create():

table.create()

If you would to initially split the table into several tablets (Tablets are
similar to HBase regions):

table.create(initial_split_keys=['s1', 's2'])

Delete an existing Table

Make a DeleteTable [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L50-L52] API request with
delete():

table.delete()

Rename an existing Table

Though the RenameTable [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L58-L58] API request is listed in the service
definition, requests to that method return:

BigtableTableService.RenameTable is not yet implemented

We have implemented rename()
but it will not work unless the backend supports the method.

List Column Families in a Table

Though there is no official method for retrieving column families [https://cloud.google.com/bigtable/docs/schema-design#column_families_and_column_qualifiers]
associated with a table, the GetTable [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L45-L47] API method returns a
table object with the names of the column families.

To retrieve the list of column families use
list_column_families():

column_families = table.list_column_families()

Note

Unfortunately the garbage collection rules used to create each column family
are not returned in the GetTable [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L45-L47] response.

Column Family Factory

To create a
ColumnFamily object:

column_family = table.column_family(column_family_id)

There is no real reason to use this factory unless you intend to
create or delete a column family.

In addition, you can specify an optional gc_rule (a
GarbageCollectionRule
or similar):

column_family = table.column_family(column_family_id,
 gc_rule=gc_rule)

This rule helps the backend determine when and how to clean up old cells
in the column family.

See the Column Families doc for more information about
GarbageCollectionRule
and related classes.

Create a new Column Family

After creating the column family object, make a CreateColumnFamily [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L61-L63] API
request with
ColumnFamily.create()

column_family.create()

Delete an existing Column Family

Make a DeleteColumnFamily [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L71-L73] API request with
ColumnFamily.delete()

column_family.delete()

Update an existing Column Family

Though the UpdateColumnFamily [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/admin/table/v1/bigtable_table_service.proto#L66-L68] API request is listed in the service
definition, requests to that method return:

BigtableTableService.UpdateColumnFamily is not yet implemented

We have implemented
ColumnFamily.update()
but it will not work unless the backend supports the method.

Next Step

Now we go down the final step of the hierarchy from
Table to
Row as well as streaming
data directly via a Table.

Head next to learn about the Data API.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Table

User friendly container for Google Cloud Bigtable Table.

	
class gcloud_bigtable.table.Table(table_id, cluster)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Representation of a Google Cloud Bigtable Table.

Note

We don’t define any properties on a table other than the name. As
the proto says, in a request:

The name field of the Table and all of its ColumnFamilies must
be left blank, and will be populated in the response.

This leaves only the current_operation and granularity
fields. The current_operation is only used for responses while
granularity is an enum with only one value.

We can use a Table to:

	create() the table

	rename() the table

	delete() the table

	list_column_families() in the table

	Parameters:	
	table_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the table.

	cluster (cluster.Cluster) – The cluster that owns the table.

	
client

	Getter for table’s client.

	Return type:	client.Client

	Returns:	The client that owns this table.

	
cluster

	Getter for table’s cluster.

	Return type:	cluster.Cluster

	Returns:	The cluster stored on the table.

	
column_family(column_family_id, gc_rule=None)[source]

	Factory to create a column family associated with this table.

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the column family. Must be of the
form [_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	gc_rule (column_family.GarbageCollectionRule,
column_family.GarbageCollectionRuleUnion or
column_family.GarbageCollectionRuleIntersection) – (Optional) The garbage collection settings for this
column family.

	Return type:	column_family.ColumnFamily

	Returns:	A column family owned by this table.

	
create(initial_split_keys=None, timeout_seconds=None)[source]

	Creates this table.

Note

Though a _generated.bigtable_table_data_pb2.Table is also
allowed (as the table property) in a create table request, we
do not support it in this method. As mentioned in the
Table docstring, the name is the only useful property in
the table proto.

Note

A create request returns a
_generated.bigtable_table_data_pb2.Table but we don’t use
this response. The proto definition allows for the inclusion of a
current_operation in the response, but in example usage so far,
it seems the Bigtable API does not return any operation.

	Parameters:	
	initial_split_keys (list [https://docs.python.org/library/functions.html#list]) – (Optional) List of row keys that will be
used to initially split the table into
several tablets (Tablets are similar to
HBase regions). Given two split keys,
"s1" and "s2", three tablets will be
created, spanning the key ranges:
[, s1), [s1, s2), [s2,).

	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	
delete(timeout_seconds=None)[source]

	Delete this table.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	
list_column_families(timeout_seconds=None)[source]

	Check if this table exists.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	Return type:	dictionary with string as keys and
column_family.ColumnFamily as values

	Returns:	List of column families attached to this table.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the column
family name from the response does not agree with the computed
name from the column family ID.

	
name

	Table name used in requests.

Note

This property will not change if table_id does not, but the
return value is not cached.

The table name is of the form

"projects/../zones/../clusters/../tables/{table_id}"

	Return type:	str [https://docs.python.org/library/functions.html#str]

	Returns:	The table name.

	
read_row(row_key, filter=None, timeout_seconds=None)[source]

	Read a single row from this table.

	Parameters:	
	row_key (bytes) – The key of the row to read from.

	filter (row.RowFilter, row.RowFilterChain,
row.RowFilterUnion or
row.ConditionalRowFilter) – (Optional) The filter to apply to the contents of the
row. If unset, returns the entire row.

	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	Return type:	PartialRowData

	Returns:	The contents of the row.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if a commit row
chunk is never encountered.

	
read_rows(start_key=None, end_key=None, allow_row_interleaving=None, limit=None, filter=None, timeout_seconds=None)[source]

	Read rows from this table.

	Parameters:	
	start_key (bytes) – (Optional) The beginning of a range of row keys to
read from. The range will include start_key. If
left empty, will be interpreted as the empty string.

	end_key (bytes) – (Optional) The end of a range of row keys to read from.
The range will not include end_key. If left empty,
will be interpreted as an infinite string.

	filter (row.RowFilter, row.RowFilterChain,
row.RowFilterUnion or
row.ConditionalRowFilter) – (Optional) The filter to apply to the contents of the
specified row(s). If unset, reads every column in
each row.

	allow_row_interleaving (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) By default, rows are read
sequentially, producing results which
are guaranteed to arrive in increasing
row order. Setting
allow_row_interleaving to
True [https://docs.python.org/library/constants.html#True] allows multiple rows to be
interleaved in the response stream,
which increases throughput but breaks
this guarantee, and may force the
client to use more memory to buffer
partially-received rows.

	limit (int [https://docs.python.org/library/functions.html#int]) – (Optional) The read will terminate after committing to N
rows’ worth of results. The default (zero) is to return
all results. Note that if allow_row_interleaving is
set to True [https://docs.python.org/library/constants.html#True], partial results may be returned for
more than N rows. However, only N commit_row chunks
will be sent.

	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	Return type:	PartialRowsData

	Returns:	A PartialRowsData convenience wrapper for consuming
the streamed results.

	
rename(new_table_id, timeout_seconds=None)[source]

	Rename this table.

Note

This cannot be used to move tables between clusters,
zones, or projects.

Note

The Bigtable Table Admin API currently returns

BigtableTableService.RenameTable is not yet implemented

when this method is used. It’s unclear when this method will
actually be supported by the API.

	Parameters:	
	new_table_id (str [https://docs.python.org/library/functions.html#str]) – The new name table ID.

	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	
row(row_key)[source]

	Factory to create a row associated with this table.

	Parameters:	row_key (bytes) – The key for the row being created.

	Return type:	row.Row

	Returns:	A row owned by this table.

	
sample_row_keys(timeout_seconds=None)[source]

	Read a sample of row keys in the table.

The returned row keys will delimit contiguous sections of the table of
approximately equal size, which can be used to break up the data for
distributed tasks like mapreduces.

The elements in the iterator are a SampleRowKeys response and they have
the properties offset_bytes and row_key. They occur in sorted
order. The table might have contents before the first row key in the
list and after the last one, but a key containing the empty string
indicates “end of table” and will be the last response given, if
present.

Note

Row keys in this list may not have ever been written to or read
from, and users should therefore not make any assumptions about the
row key structure that are specific to their use case.

The offset_bytes field on a response indicates the approximate
total storage space used by all rows in the table which precede
row_key. Buffering the contents of all rows between two subsequent
samples would require space roughly equal to the difference in their
offset_bytes fields.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on table.

	Return type:	grpc.framework.alpha._reexport._CancellableIterator

	Returns:	A cancel-able iterator. Can be consumed by calling next()
or by casting to a list [https://docs.python.org/library/functions.html#list] and can be cancelled by
calling cancel().

	
timeout_seconds

	Getter for table’s default timeout seconds.

	Return type:	int [https://docs.python.org/library/functions.html#int]

	Returns:	The timeout seconds default stored on the table’s client.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Column Families

When creating a Table,
it is possible to set garbage collection rules for expired data.

By setting a rule, cells in the table matching the rule will be deleted
during periodic garbage collection (which executes opportunistically in the
background).

The types
GarbageCollectionRule,
GarbageCollectionRuleUnion and
GarbageCollectionRuleIntersection
can all be used as the optional gc_rule argument in the
ColumnFamily
constructor. This value is then used in the
create() and
update() methods.

These rules can be nested arbitrarily, with
GarbageCollectionRule
at the lowest level of the nesting:

import datetime

max_age = datetime.timedelta(days=3)
rule1 = GarbageCollectionRule(max_age=max_age)
rule2 = GarbageCollectionRule(max_num_versions=1)

Make a composite that matches anything older than 3 days **AND**
with more than 1 version.
rule3 = GarbageCollectionIntersection(rules=[rule1, rule2])

Make another composite that matches our previous intersection
OR anything that has more than 3 versions.
rule4 = GarbageCollectionRule(max_num_versions=3)
rule5 = GarbageCollectionUnion(rules=[rule3, rule4])

User friendly container for Google Cloud Bigtable Column Family.

	
class gcloud_bigtable.column_family.ColumnFamily(column_family_id, table, gc_rule=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Representation of a Google Cloud Bigtable Column Family.

We can use a ColumnFamily to:

	create() itself

	update() itself

	delete() itself

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The ID of the column family. Must be of the
form [_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	table (table.Table) – The table that owns the column family.

	gc_rule (GarbageCollectionRule,
GarbageCollectionRuleUnion or
GarbageCollectionRuleIntersection) – (Optional) The garbage collection settings for this
column family.

	
client

	Getter for column family’s client.

	Return type:	client.Client

	Returns:	The client that owns this column family.

	
create(timeout_seconds=None)[source]

	Create this column family.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
column family.

	
delete(timeout_seconds=None)[source]

	Delete this column family.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
column family.

	
name

	Column family name used in requests.

Note

This property will not change if column_family_id does not, but
the return value is not cached.

The table name is of the form

"projects/../zones/../clusters/../tables/../columnFamilies/.."

	Return type:	str [https://docs.python.org/library/functions.html#str]

	Returns:	The column family name.

	
table

	Getter for column family’s table.

	Return type:	table.Table

	Returns:	The table stored on the column family.

	
timeout_seconds

	Getter for column family’s default timeout seconds.

	Return type:	int [https://docs.python.org/library/functions.html#int]

	Returns:	The timeout seconds default.

	
update(timeout_seconds=None)[source]

	Update this column family.

Note

The Bigtable Table Admin API currently returns

BigtableTableService.UpdateColumnFamily is not yet implemented

when this method is used. It’s unclear when this method will
actually be supported by the API.

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on
column family.

	
class gcloud_bigtable.column_family.GarbageCollectionRule(max_num_versions=None, max_age=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Table garbage collection rule.

Cells in the table fitting the rule will be deleted during
garbage collection.

These values can be combined via GarbageCollectionRuleUnion and
GarbageCollectionRuleIntersection.

Note

At most one of max_num_versions and max_age can be specified
at once.

Note

A string gc_expression can also be used with API requests, but
that value would be superceded by a gc_rule. As a result, we
don’t support that feature and instead support via this native
object.

	Parameters:	
	max_num_versions (int [https://docs.python.org/library/functions.html#int]) – The maximum number of versions

	max_age (datetime.timedelta [https://docs.python.org/library/datetime.html#datetime.timedelta]) – The maximum age allowed for a cell in the table.

	Raises:	TypeError [https://docs.python.org/library/exceptions.html#exceptions.TypeError] if both
max_num_versions and max_age are set.

	
to_pb()[source]

	Converts the GarbageCollectionRule to a protobuf.

	Return type:	data_pb2.GcRule

	Returns:	The converted current object.

	
class gcloud_bigtable.column_family.GarbageCollectionRuleIntersection(rules=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Intersection of garbage collection rules.

	Parameters:	rules (list [https://docs.python.org/library/functions.html#list]) – List of GarbageCollectionRule,
GarbageCollectionRuleUnion and/or
GarbageCollectionRuleIntersection

	
to_pb()[source]

	Converts the intersection into a single gc rule as a protobuf.

	Return type:	data_pb2.GcRule

	Returns:	The converted current object.

	
class gcloud_bigtable.column_family.GarbageCollectionRuleUnion(rules=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Union of garbage collection rules.

	Parameters:	rules (list [https://docs.python.org/library/functions.html#list]) – List of GarbageCollectionRule,
GarbageCollectionRuleUnion and/or
GarbageCollectionRuleIntersection

	
to_pb()[source]

	Converts the union into a single gc rule as a protobuf.

	Return type:	data_pb2.GcRule

	Returns:	The converted current object.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Data API

After creating a Table and some
column families, you are ready to store and retrieve data.

Cells vs. Columns vs. Column Families

	As we saw before, a table can have many column families.

	As we’ll see below, a table also has many rows (specified by row keys).

	Within a row, data is stored in a cell. A cell simply has a value (as
bytes) and a timestamp. The number of cells in each row can be
different, depending on what was stored in each row.

	Each cell lies in a column (not a column family). A column is really
just a more specific modifier within a column family. A column
can be present in every way, in only one or anywhere in between.

	Within a column family there can be many columns. For example within
the column family foo we could have columns bar and baz.
These would typically be represented as foo:bar and foo:baz.

Modifying Data

Since data is stored in cells, which are stored in rows, the
Row class is the only class used to
modify (write, update, delete) data in a
Table.

Row Factory

To create a Row object

row = table.row(row_key)

Unlike the previous string values we’ve used before, the row key must
be bytes.

Direct vs. Conditional vs. Append

There are three ways to modify data in a table, described by the
MutateRow [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L50-L52], CheckAndMutateRow [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L55-L57] and ReadModifyWriteRow [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L63-L65] API
methods.

	The direct way is via MutateRow [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L50-L52] which involves simply
adding, overwriting or deleting cells.

	The conditional way is via CheckAndMutateRow [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L55-L57]. This method
first checks if some filter is matched in a a given row, then
applies one of two sets of mutations, depending on if a match
occurred or not.

	The append way is via ReadModifyWriteRow [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L63-L65]. This simply
appends (as bytes) or increments (as an integer) data in a presumed
existing cell in a row.

Building Up Mutations

In all three cases, a set of mutations (or two sets) are built up
on a Row before they are sent of
in a batch via commit():

row.commit()

To send append mutations in batch, use
commit_modifications():

row.commit_modifications()

We have a small set of methods on the Row
to build these mutations up.

Direct Mutations

Direct mutations can be added via one of four methods

	set_cell() allows a
single value to be written to a column

row.set_cell(column_family_id, column, value,
 timestamp=timestamp)

If the timestamp is omitted, the current time on the Google Cloud
Bigtable server will be used when the cell is stored.

The value can either by bytes or an integer (which will be converted to
bytes as an unsigned 64-bit integer).

	delete_cell() deletes
all cells (i.e. for all timestamps) in a given column

row.delete_cell(column_family_id, column)

Remember, this only happens in the row we are using.

If we only want to delete cells from a limited range of time, a
TimestampRange can
be used

row.delete_cell(column_family_id, column,
 time_range=time_range)

	delete_cells() does
the same thing as delete_cell()
but accepts a list of columns in a column family rather than a single one.

row.delete_cells(column_family_id, [column1, column2],
 time_range=time_range)

In addition, if we want to delete cells from every column in a column family,
the special ALL_COLUMNS value
can be used

row.delete_cells(column_family_id, Row.ALL_COLUMNS,
 time_range=time_range)

	delete() will delete the entire row

row.delete()

Conditional Mutations

Making conditional conditional modifications is essentially identical
to direct modifications, but we need to specify a filter to match
against in the row:

row = table.row(row_key, filter=filter)

See the Row class for more information
about acceptable values for filter.

The only other difference from direct modifications are that each mutation
added must specify a state: will the mutation be applied if the filter
matches or if it fails to match.

For example

row.set_cell(column_family_id, column, value,
 timestamp=timestamp, state=True)

Note

If state is passed when no filter is set on a
Row, adding the mutation will fail.
Similarly, if no state is passed when a filter has been set,
adding the mutation will fail.

Append Mutations

Append mutations can be added via one of two methods

	append_cell_value appends
a bytes value to an existing cell:

row.append_cell_value(column_family_id, column, bytes_value)

	increment_cell_value increments
an integer value in an existing cell:

row.increment_cell_value(column_family_id, column, int_value)

Since only bytes are stored in a cell, the current value is decoded as
an unsigned 64-bit integer before being incremented. (This happens on
the Google Cloud Bigtable server, not in the library.)

Notice that no timestamp was specified. This is because append mutations
operate on the latest value of the specified column.

If there are no cells in the specified column, then the empty string (bytes
case) or zero (integer case) are the assumed values.

Starting Fresh

If accumulated mutations need to be dropped, use
clear_mutations()

row.clear_mutations()

To clear append mutations, use
clear_modification_rules()

row.clear_modification_rules()

Reading Data

Read Single Row from a Table

To make a ReadRows [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L36-L38] API request for a single row key, use
Table.read_row():

row_data = table.read_row(row_key)

Rather than returning a Row, this method
returns a PartialRowData
instance. This class is used for reading and parsing data rather than for
modifying data (as Row is).

A filter can also be applied to the

row_data = table.read_row(row_key, filter=filter)

The allowable filter values are the same as those used for a
Row with conditional mutations. For
more information, see the
Table.read_row() documentation.

Stream Many Rows from a Table

To make a ReadRows [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L36-L38] API request for a stream of rows, use
Table.read_rows():

row_data = table.read_rows()

Using gRPC over HTTP/2, a continual stream of responses will be delivered.
We have a custom
returns a PartialRowsData
class to allow consuming and parsing these streams as they come.

In particular

	consume_next()
pulls the next result from the stream, parses it and stores it on the
PartialRowsData instance

	consume_all()
pulls results from the stream until there are no more

	cancel() closes
the stream

See the PartialRowsData
documentation for more information.

As with
Table.read_row(), an optional
filter can be applied. In addition a start_key and / or end_key
can be supplied for the stream, a limit can be set and a boolean
allow_row_interleaving can be specified to allow faster streamed results
at the potential cost of non-sequential reads.

See the Table.read_rows()
documentation for more information on the optional arguments.

Sample Keys in a Table

Make a SampleRowKeys [https://github.com/GoogleCloudPlatform/cloud-bigtable-client/blob/f4d922bb950f1584b30f9928e84d042ad59f5658/bigtable-protos/src/main/proto/google/bigtable/v1/bigtable_service.proto#L44-L46] API request with
Table.sample_row_keys():

keys_iterator = table.sample_row_keys()

The returned row keys will delimit contiguous sections of the table of
approximately equal size, which can be used to break up the data for
distributed tasks like mapreduces.

As with
Table.read_rows(), the
returned keys_iterator is connected to a cancellable HTTP/2 stream.

The next key in the result can be accessed via

next_key = keys_iterator.next()

or all keys can be iterated over via

for curr_key in keys_iterator:
 do_something(curr_key)

Just as with reading, the stream can be canceled:

keys_iterator.cancel()

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 next |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Row

User friendly container for Google Cloud Bigtable Row.

	
class gcloud_bigtable.row.CellValueRange(start_value=None, end_value=None, inclusive_start=True, inclusive_end=True)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

A range of values to restrict to in a row filter.

With only match cells that have values in this range.

Both the start and end value can be included or excluded in the range.
By default, we include them both, but this can be changed with optional
flags.

	Parameters:	
	start_value (bytes) – The start of the range of values. If no value is
used, it is interpreted as the empty string
(inclusive) by the backend.

	end_value (bytes) – The end of the range of values. If no value is used, it
is interpreted as the infinite string (exclusive) by the
backend.

	inclusive_start (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the start value should be
included in the range (or excluded).

	inclusive_end (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the end value should be
included in the range (or excluded).

	
to_pb()[source]

	Converts the CellValueRange to a protobuf.

	Return type:	data_pb2.ValueRange

	Returns:	The converted current object.

	
class gcloud_bigtable.row.ColumnRange(column_family_id, start_column=None, end_column=None, inclusive_start=True, inclusive_end=True)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

A range of columns to restrict to in a row filter.

Both the start and end column can be included or excluded in the range.
By default, we include them both, but this can be changed with optional
flags.

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The column family that contains the columns. Must
be of the form [_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	start_column (bytes) – The start of the range of columns. If no value is
used, it is interpreted as the empty string
(inclusive) by the backend.

	end_column (bytes) – The end of the range of columns. If no value is used, it
is interpreted as the infinite string (exclusive) by the
backend.

	inclusive_start (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the start column should be
included in the range (or excluded).

	inclusive_end (bool [https://docs.python.org/library/functions.html#bool]) – Boolean indicating if the end column should be
included in the range (or excluded).

	
to_pb()[source]

	Converts the ColumnRange to a protobuf.

	Return type:	data_pb2.ColumnRange

	Returns:	The converted current object.

	
class gcloud_bigtable.row.ConditionalRowFilter(base_filter, true_filter=None, false_filter=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Conditional filter

Executes one of two filters based on another filter. If the base_filter
returns any cells in the row, then true_filter is executed. If not,
then false_filter is executed.

Note

The base_filter does not execute atomically with the true and false
filters, which may lead to inconsistent or unexpected results.

Additionally, executing a ConditionalRowFilter has poor
performance on the server, especially when false_filter is set.

	Parameters:	
	base_filter (RowFilter, RowFilterChain,
RowFilterUnion or ConditionalRowFilter) – The filter to condition on before executing the
true/false filters.

	true_filter (RowFilter, RowFilterChain,
RowFilterUnion or ConditionalRowFilter) – (Optional) The filter to execute if there are any cells
matching base_filter. If not provided, no results
will be returned in the true case.

	false_filter (RowFilter, RowFilterChain,
RowFilterUnion or
ConditionalRowFilter) – (Optional) The filter to execute if there are no cells
matching base_filter. If not provided, no results
will be returned in the false case.

	
to_pb()[source]

	Converts the ConditionalRowFilter to a protobuf.

	Return type:	data_pb2.RowFilter

	Returns:	The converted current object.

	
class gcloud_bigtable.row.Row(row_key, table, filter=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Representation of a Google Cloud Bigtable Row.

Note

A Row accumulates mutations locally via the set_cell(),
delete(), delete_cell() and delete_cells() methods.
To actually send these mutations to the Google Cloud Bigtable API, you
must call commit(). If a filter is set on the Row,
the mutations must have an associated state: True [https://docs.python.org/library/constants.html#True] or
False [https://docs.python.org/library/constants.html#False]. The mutations will be applied conditionally, based on
whether the filter matches any cells in the Row or not.

	Parameters:	
	row_key (bytes) – The key for the current row.

	table (table.Table) – The table that owns the row.

	filter (RowFilter, RowFilterChain,
RowFilterUnion or ConditionalRowFilter) – (Optional) Filter to be used for conditional mutations.
If a filter is set, then the Row will accumulate
mutations for either a True [https://docs.python.org/library/constants.html#True] or False [https://docs.python.org/library/constants.html#False] state.
When commit()-ed, the mutations for the True [https://docs.python.org/library/constants.html#True]
state will be applied if the filter matches any cells in the
row, otherwise the False [https://docs.python.org/library/constants.html#False] state will be.

	
ALL_COLUMNS = <object object>

	Sentinel value used to indicate all columns in a column family.

	
append_cell_value(column_family_id, column, value)[source]

	Appends a value to an existing cell.

Note

This method adds a read-modify rule protobuf to the accumulated
read-modify rules on this Row, but does not make an API
request. To actually send an API request (with the rules) to the
Google Cloud Bigtable API, call commit().

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The column family that contains the column.
Must be of the form
[_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	column (bytes) – The column within the column family where the cell
is located.

	value (bytes) – The value to append to the existing value in the cell. If
the targeted cell is unset, it will be treated as
containing the empty string.

	
clear_modification_rules()[source]

	Removes all currently accumulated modifications on current row.

	
clear_mutations()[source]

	Removes all currently accumulated mutations on the current row.

	
client

	Getter for row’s client.

	Return type:	client.Client

	Returns:	The client that owns this row.

	
commit(timeout_seconds=None)[source]

	Makes a MutateRow or CheckAndMutateRow API request.

If no mutations have been created in the row, no request is made.

Mutations are applied atomically and in order, meaning that earlier
mutations can be masked / negated by later ones. Cells already present
in the row are left unchanged unless explicitly changed by a mutation.

After committing the accumulated mutations, resets the local
mutations to an empty list.

In the case that a filter is set on the Row, the mutations
will be applied conditionally, based on whether the filter matches
any cells in the Row or not. (Each method which adds a
mutation has a state parameter for this purpose.)

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on row.

	Return type:	bool [https://docs.python.org/library/functions.html#bool] or NoneType [https://docs.python.org/library/types.html#types.NoneType]

	Returns:	None [https://docs.python.org/library/constants.html#None] if there is no filter, otherwise a flag
indicating if the filter was matched (which also
indicates which set of mutations were applied by the server).

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the number of
mutations exceeds the _MAX_MUTATIONS.

	
commit_modifications(timeout_seconds=None)[source]

	Makes a ReadModifyWriteRow API request.

This commits modifications made by append_cell_value() and
increment_cell_value(). If no modifications were made, makes
no API request and just returns {}.

Modifies a row atomically, reading the latest existing timestamp/value
from the specified columns and writing a new value by appending /
incrementing. The new cell created uses either the current server time
or the highest timestamp of a cell in that column (if it exceeds the
server time).

	Parameters:	timeout_seconds (int [https://docs.python.org/library/functions.html#int]) – Number of seconds for request time-out.
If not passed, defaults to value set on row.

	Return type:	dict [https://docs.python.org/library/stdtypes.html#dict]

	Returns:	The new contents of all modified cells. Returned as a
dictionary of column families, each of which holds a
dictionary of columns. Each column contains a list of cells
modified. Each cell is represented with a two-tuple with the
value (in bytes) and the timestamp for the cell. For example:{
 u'col-fam-id': {
 b'col-name1': [
 (b'cell-val', datetime.datetime(...)),
 (b'cell-val-newer', datetime.datetime(...)),
],
 b'col-name2': [
 (b'altcol-cell-val', datetime.datetime(...)),
],
 },
 u'col-fam-id2': {
 b'col-name3-but-other-fam': [
 (b'foo', datetime.datetime(...)),
],
 },
}

	
delete(state=None)[source]

	Deletes this row from the table.

Note

This method adds a mutation to the accumulated mutations on this
Row, but does not make an API request. To actually
send an API request (with the mutations) to the Google Cloud
Bigtable API, call commit().

	Parameters:	state (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) The state that the mutation should be
applied in. Unset if the mutation is not conditional,
otherwise True [https://docs.python.org/library/constants.html#True] or False [https://docs.python.org/library/constants.html#False].

	
delete_cell(column_family_id, column, time_range=None, state=None)[source]

	Deletes cell in this row.

Note

This method adds a mutation to the accumulated mutations on this
Row, but does not make an API request. To actually
send an API request (with the mutations) to the Google Cloud
Bigtable API, call commit().

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The column family that contains the column
or columns with cells being deleted. Must be
of the form [_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	column (bytes) – The column within the column family that will have a
cell deleted.

	time_range (TimestampRange) – (Optional) The range of time within which cells
should be deleted.

	state (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) The state that the mutation should be
applied in. Unset if the mutation is not conditional,
otherwise True [https://docs.python.org/library/constants.html#True] or False [https://docs.python.org/library/constants.html#False].

	
delete_cells(column_family_id, columns, time_range=None, state=None)[source]

	Deletes cells in this row.

Note

This method adds a mutation to the accumulated mutations on this
Row, but does not make an API request. To actually
send an API request (with the mutations) to the Google Cloud
Bigtable API, call commit().

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The column family that contains the column
or columns with cells being deleted. Must be
of the form [_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	columns (list [https://docs.python.org/library/functions.html#list] of str [https://docs.python.org/library/functions.html#str] /
unicode [https://docs.python.org/library/functions.html#unicode], or object [https://docs.python.org/library/functions.html#object]) – The columns within the column family that will have
cells deleted. If Row.ALL_COLUMNS is used then
the entire column family will be deleted from the row.

	time_range (TimestampRange) – (Optional) The range of time within which cells
should be deleted.

	state (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) The state that the mutation should be
applied in. Unset if the mutation is not conditional,
otherwise True [https://docs.python.org/library/constants.html#True] or False [https://docs.python.org/library/constants.html#False].

	
filter

	Getter for row’s filter.

	Return type:	RowFilter, RowFilterChain,
RowFilterUnion, ConditionalRowFilter or
NoneType [https://docs.python.org/library/types.html#types.NoneType]

	Returns:	The filter for the row.

	
increment_cell_value(column_family_id, column, int_value)[source]

	Increments a value in an existing cell.

Assumes the value in the cell is stored as a 64 bit integer
serialized to bytes.

Note

This method adds a read-modify rule protobuf to the accumulated
read-modify rules on this Row, but does not make an API
request. To actually send an API request (with the rules) to the
Google Cloud Bigtable API, call commit().

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The column family that contains the column.
Must be of the form
[_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	column (bytes) – The column within the column family where the cell
is located.

	int_value (int [https://docs.python.org/library/functions.html#int]) – The value to increment the existing value in the cell
by. If the targeted cell is unset, it will be treated
as containing a zero. Otherwise, the targeted cell
must contain an 8-byte value (interpreted as a 64-bit
big-endian signed integer), or the entire request
will fail.

	
row_key

	Getter for row’s key.

	Return type:	bytes

	Returns:	The key for the row.

	
set_cell(column_family_id, column, value, timestamp=None, state=None)[source]

	Sets a value in this row.

The cell is determined by the row_key of the Row and the
column. The column must be in an existing
column_family.ColumnFamily (as determined by
column_family_id).

Note

This method adds a mutation to the accumulated mutations on this
Row, but does not make an API request. To actually
send an API request (with the mutations) to the Google Cloud
Bigtable API, call commit().

	Parameters:	
	column_family_id (str [https://docs.python.org/library/functions.html#str]) – The column family that contains the column.
Must be of the form
[_a-zA-Z0-9][-_.a-zA-Z0-9]*.

	column (bytes) – The column within the column family where the cell
is located.

	value (bytes or int [https://docs.python.org/library/functions.html#int]) – The value to set in the cell. If an integer is used,
will be interpreted as a 64-bit big-endian signed
integer (8 bytes).

	timestamp (datetime.datetime [https://docs.python.org/library/datetime.html#datetime.datetime]) – (Optional) The timestamp of the operation.

	state (bool [https://docs.python.org/library/functions.html#bool]) – (Optional) The state that the mutation should be
applied in. Unset if the mutation is not conditional,
otherwise True [https://docs.python.org/library/constants.html#True] or False [https://docs.python.org/library/constants.html#False].

	
table

	Getter for row’s table.

	Return type:	table.Table

	Returns:	The table stored on the row.

	
timeout_seconds

	Getter for row’s default timeout seconds.

	Return type:	int [https://docs.python.org/library/functions.html#int]

	Returns:	The timeout seconds default.

	
class gcloud_bigtable.row.RowFilter(row_key_regex_filter=None, family_name_regex_filter=None, column_qualifier_regex_filter=None, value_regex_filter=None, column_range_filter=None, timestamp_range_filter=None, value_range_filter=None, cells_per_row_offset_filter=None, cells_per_row_limit_filter=None, cells_per_column_limit_filter=None, row_sample_filter=None, strip_value_transformer=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Basic filter to apply to cells in a row.

These values can be combined via RowFilterChain,
RowFilterUnion and ConditionalRowFilter.

The regex filters must be valid RE2 patterns. See Google’s
RE2 reference [https://github.com/google/re2/wiki/Syntax] for the accepted syntax.

Note

At most one of the keyword arguments can be specified at once.

Note

For bytes regex filters (row_key, column_qualifier and
value), special care need be used with the expression used. Since
each of these properties can contain arbitrary bytes, the \C
escape sequence must be used if a true wildcard is desired. The .
character will not match the new line character \n, which may be
present in a binary value.

	Parameters:	
	row_key_regex_filter (bytes) – A regular expression (RE2) to match cells from
rows with row keys that satisfy this regex.
For a CheckAndMutateRowRequest, this
filter is unnecessary since the row key is
already specified.

	family_name_regex_filter (str [https://docs.python.org/library/functions.html#str]) – A regular expression (RE2) to match cells
from columns in a given column family. For
technical reasons, the regex must not
contain the ':' character, even if it
isnot being uses as a literal.

	column_qualifier_regex_filter (bytes) – A regular expression (RE2) to match
cells from column that match this
regex (irrespective of column
family).

	value_regex_filter (bytes) – A regular expression (RE2) to match cells with
values that match this regex.

	column_range_filter (ColumnRange) – Range of columns to limit cells to.

	timestamp_range_filter (TimestampRange) – Range of time that cells should match
against.

	value_range_filter (CellValueRange) – Range of cell values to filter for.

	cells_per_row_offset_filter (int [https://docs.python.org/library/functions.html#int]) – Skips the first N cells of the row.

	cells_per_row_limit_filter (int [https://docs.python.org/library/functions.html#int]) – Matches only the first N cells of the
row.

	cells_per_column_limit_filter (int [https://docs.python.org/library/functions.html#int]) – Matches only the most recent N cells
within each column. This filters a
(family name, column) pair, based on
timestamps of each cell.

	row_sample_filter (float [https://docs.python.org/library/functions.html#float]) – Non-deterministic filter. Matches all cells from
a row with probability p, and matches no cells
from the row with probability 1-p. (Here, the
probability p is row_sample_filter.)

	strip_value_transformer (bool [https://docs.python.org/library/functions.html#bool]) – If True [https://docs.python.org/library/constants.html#True], replaces each cell’s value
with the empty string. As the name
indicates, this is more useful as a
transformer than a generic query / filter.

	Raises:	TypeError [https://docs.python.org/library/exceptions.html#exceptions.TypeError] if not exactly one
value set in the constructor.

	
to_pb()[source]

	Converts the RowFilter to a protobuf.

	Return type:	data_pb2.RowFilter

	Returns:	The converted current object.

	
class gcloud_bigtable.row.RowFilterChain(filters=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Chain of row filters.

Sends rows through several filters in sequence. The filters are “chained”
together to process a row. After the first filter is applied, the second
is applied to the filtered output and so on for subsequent filters.

	Parameters:	filters (list [https://docs.python.org/library/functions.html#list]) – List of RowFilter, RowFilterChain,
RowFilterUnion and/or
ConditionalRowFilter

	
to_pb()[source]

	Converts the RowFilterChain to a protobuf.

	Return type:	data_pb2.RowFilter

	Returns:	The converted current object.

	
class gcloud_bigtable.row.RowFilterUnion(filters=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Union of row filters.

Sends rows through several filters simultaneously, then
merges / interleaves all the filtered results together.

If multiple cells are produced with the same column and timestamp,
they will all appear in the output row in an unspecified mutual order.

	Parameters:	filters (list [https://docs.python.org/library/functions.html#list]) – List of RowFilter, RowFilterChain,
RowFilterUnion and/or
ConditionalRowFilter

	
to_pb()[source]

	Converts the RowFilterUnion to a protobuf.

	Return type:	data_pb2.RowFilter

	Returns:	The converted current object.

	
class gcloud_bigtable.row.TimestampRange(start=None, end=None)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Range of time with inclusive lower and exclusive upper bounds.

	Parameters:	
	start (datetime.datetime [https://docs.python.org/library/datetime.html#datetime.datetime]) – (Optional) The (inclusive) lower bound of the timestamp
range. If omitted, defaults to Unix epoch.

	end (datetime.datetime [https://docs.python.org/library/datetime.html#datetime.datetime]) – (Optional) The (exclusive) upper bound of the timestamp
range. If omitted, defaults to “infinity” (no upper bound).

	
to_pb()[source]

	Converts the TimestampRange to a protobuf.

	Return type:	data_pb2.TimestampRange

	Returns:	The converted current object.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	
 previous |

 	Google Cloud Bigtable 0.0.1 documentation

Row Data

Container for Google Cloud Bigtable Cells and Streaming Row Contents.

	
class gcloud_bigtable.row_data.Cell(value, timestamp)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Representation of a Google Cloud Bigtable Cell.

	Parameters:	
	value (bytes) – The value stored in the cell.

	timestamp (datetime.datetime [https://docs.python.org/library/datetime.html#datetime.datetime]) – The timestamp when the cell was stored.

	
classmethod from_pb(cell_pb)[source]

	Create a new cell from a Cell protobuf.

	Parameters:	cell_pb (_generated.bigtable_data_pb2.Cell) – The protobuf to convert.

	Return type:	Cell

	Returns:	The cell corresponding to the protobuf.

	
class gcloud_bigtable.row_data.PartialRowData(row_key)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Representation of partial row in a Google Cloud Bigtable Table.

These are expected to be updated directly from a
_generated.bigtable_service_messages_pb2.ReadRowsResponse

	Parameters:	row_key (bytes) – The key for the row holding the (partial) data.

	
cells

	Property returning all the cells accumulated on this partial row.

	Return type:	dict [https://docs.python.org/library/stdtypes.html#dict]

	Returns:	Dictionary of the Cell objects accumulated. This
dictionary has two-levels of keys (first for column families
and second for column names/qualifiers within a family). For
a given column, a list of Cell objects is stored.

	
clear()[source]

	Clears all cells that have been added.

	
committed

	Getter for the committed status of the (partial) row.

	Return type:	bool [https://docs.python.org/library/functions.html#bool]

	Returns:	The committed status of the (partial) row.

	
row_key

	Getter for the current (partial) row’s key.

	Return type:	bytes

	Returns:	The current (partial) row’s key.

	
update_from_read_rows(read_rows_response_pb)[source]

	Updates the current row from a ReadRows response.

	Parameters:	read_rows_response_pb (_generated.bigtable_service_messages_pb2.ReadRowsResponse) – A response streamed back as part of a
ReadRows request.

	Raises:	ValueError [https://docs.python.org/library/exceptions.html#exceptions.ValueError] if the current
partial row has already been committed, if the row key on the
response doesn’t match the current one or if there is a chunk
encountered with an unexpected ONEOF protobuf property.

	
class gcloud_bigtable.row_data.PartialRowsData(response_iterator)[source]

	Bases: object [https://docs.python.org/library/functions.html#object]

Convenience wrapper for consuming a ReadRows streaming response.

	Parameters:	response_iterator (grpc.framework.alpha._reexport._CancellableIterator) – A streaming iterator returned from a
ReadRows request.

	
cancel()[source]

	Cancels the iterator, closing the stream.

	
consume_all(max_loops=None)[source]

	Consume the streamed responses until there are no more.

This simply calls consume_next() until there are no
more to consume.

	Parameters:	max_loops (int [https://docs.python.org/library/functions.html#int]) – (Optional) Maximum number of times to try to consume
an additional ReadRowsResponse. You can use this
to avoid long wait times.

	
consume_next()[source]

	Consumes the next ReadRowsResponse from the stream.

Parses the response and stores it as a PartialRowData
in a dictionary owned by this object.

	Raises:	StopIteration [https://docs.python.org/library/exceptions.html#exceptions.StopIteration] if the
response iterator has no more responses to stream.

	
rows

	Property returning all rows accumulated from the stream.

	Return type:	dict [https://docs.python.org/library/stdtypes.html#dict]

	Returns:	Dictionary of PartialRowData.

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Google Cloud Bigtable 0.0.1 documentation

 Python Module Index

 g

 			

 		
 g	

 	[image: -]
 	
 gcloud_bigtable	

 	
 	
 gcloud_bigtable.client	

 	
 	
 gcloud_bigtable.cluster	

 	
 	
 gcloud_bigtable.column_family	

 	
 	
 gcloud_bigtable.row	

 	
 	
 gcloud_bigtable.row_data	

 	
 	
 gcloud_bigtable.table	

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	
 modules |

 	Google Cloud Bigtable 0.0.1 documentation

Index

 A
 | C
 | D
 | F
 | G
 | I
 | L
 | N
 | O
 | P
 | R
 | S
 | T
 | U

A

 	

 	ADMIN_SCOPE (in module gcloud_bigtable.client)

 	ALL_COLUMNS (gcloud_bigtable.row.Row attribute)

 	

 	append_cell_value() (gcloud_bigtable.row.Row method)

C

 	

 	cancel() (gcloud_bigtable.row_data.PartialRowsData method)

 	Cell (class in gcloud_bigtable.row_data)

 	cells (gcloud_bigtable.row_data.PartialRowData attribute)

 	CellValueRange (class in gcloud_bigtable.row)

 	clear() (gcloud_bigtable.row_data.PartialRowData method)

 	clear_modification_rules() (gcloud_bigtable.row.Row method)

 	clear_mutations() (gcloud_bigtable.row.Row method)

 	Client (class in gcloud_bigtable.client)

 	client (gcloud_bigtable.cluster.Cluster attribute)

 	

 	(gcloud_bigtable.column_family.ColumnFamily attribute)

 	(gcloud_bigtable.row.Row attribute)

 	(gcloud_bigtable.table.Table attribute)

 	Cluster (class in gcloud_bigtable.cluster)

 	cluster (gcloud_bigtable.table.Table attribute)

 	cluster() (gcloud_bigtable.client.Client method)

 	CLUSTER_ADMIN_HOST (in module gcloud_bigtable.client)

 	

 	CLUSTER_ADMIN_PORT (in module gcloud_bigtable.client)

 	cluster_stub (gcloud_bigtable.client.Client attribute)

 	column_family() (gcloud_bigtable.table.Table method)

 	ColumnFamily (class in gcloud_bigtable.column_family)

 	ColumnRange (class in gcloud_bigtable.row)

 	commit() (gcloud_bigtable.row.Row method)

 	commit_modifications() (gcloud_bigtable.row.Row method)

 	committed (gcloud_bigtable.row_data.PartialRowData attribute)

 	ConditionalRowFilter (class in gcloud_bigtable.row)

 	consume_all() (gcloud_bigtable.row_data.PartialRowsData method)

 	consume_next() (gcloud_bigtable.row_data.PartialRowsData method)

 	create() (gcloud_bigtable.cluster.Cluster method)

 	

 	(gcloud_bigtable.column_family.ColumnFamily method)

 	(gcloud_bigtable.table.Table method)

 	credentials (gcloud_bigtable.client.Client attribute)

D

 	

 	DATA_API_HOST (in module gcloud_bigtable.client)

 	DATA_API_PORT (in module gcloud_bigtable.client)

 	DATA_SCOPE (in module gcloud_bigtable.client)

 	data_stub (gcloud_bigtable.client.Client attribute)

 	DEFAULT_TIMEOUT_SECONDS (in module gcloud_bigtable.client)

 	

 	DEFAULT_USER_AGENT (in module gcloud_bigtable.client)

 	delete() (gcloud_bigtable.cluster.Cluster method)

 	

 	(gcloud_bigtable.column_family.ColumnFamily method)

 	(gcloud_bigtable.row.Row method)

 	(gcloud_bigtable.table.Table method)

 	delete_cell() (gcloud_bigtable.row.Row method)

 	delete_cells() (gcloud_bigtable.row.Row method)

F

 	

 	filter (gcloud_bigtable.row.Row attribute)

 	from_pb() (gcloud_bigtable.cluster.Cluster class method)

 	

 	(gcloud_bigtable.row_data.Cell class method)

 	

 	from_service_account_json() (gcloud_bigtable.client.Client class method)

 	from_service_account_p12() (gcloud_bigtable.client.Client class method)

G

 	

 	GarbageCollectionRule (class in gcloud_bigtable.column_family)

 	GarbageCollectionRuleIntersection (class in gcloud_bigtable.column_family)

 	GarbageCollectionRuleUnion (class in gcloud_bigtable.column_family)

 	gcloud_bigtable.client (module)

 	gcloud_bigtable.cluster (module)

 	

 	gcloud_bigtable.column_family (module)

 	gcloud_bigtable.row (module)

 	gcloud_bigtable.row_data (module)

 	gcloud_bigtable.table (module)

I

 	

 	increment_cell_value() (gcloud_bigtable.row.Row method)

L

 	

 	list_clusters() (gcloud_bigtable.client.Client method)

 	list_column_families() (gcloud_bigtable.table.Table method)

 	

 	list_tables() (gcloud_bigtable.cluster.Cluster method)

 	list_zones() (gcloud_bigtable.client.Client method)

N

 	

 	name (gcloud_bigtable.cluster.Cluster attribute)

 	

 	(gcloud_bigtable.column_family.ColumnFamily attribute)

 	(gcloud_bigtable.table.Table attribute)

O

 	

 	operation_finished() (gcloud_bigtable.cluster.Cluster method)

 	

 	operations_stub (gcloud_bigtable.client.Client attribute)

P

 	

 	PartialRowData (class in gcloud_bigtable.row_data)

 	PartialRowsData (class in gcloud_bigtable.row_data)

 	PROJECT_ENV_VAR (in module gcloud_bigtable.client)

 	

 	project_id (gcloud_bigtable.client.Client attribute)

 	

 	(gcloud_bigtable.cluster.Cluster attribute)

 	project_name (gcloud_bigtable.client.Client attribute)

R

 	

 	READ_ONLY_SCOPE (in module gcloud_bigtable.client)

 	read_row() (gcloud_bigtable.table.Table method)

 	read_rows() (gcloud_bigtable.table.Table method)

 	reload() (gcloud_bigtable.cluster.Cluster method)

 	rename() (gcloud_bigtable.table.Table method)

 	Row (class in gcloud_bigtable.row)

 	

 	row() (gcloud_bigtable.table.Table method)

 	row_key (gcloud_bigtable.row.Row attribute)

 	

 	(gcloud_bigtable.row_data.PartialRowData attribute)

 	RowFilter (class in gcloud_bigtable.row)

 	RowFilterChain (class in gcloud_bigtable.row)

 	RowFilterUnion (class in gcloud_bigtable.row)

 	rows (gcloud_bigtable.row_data.PartialRowsData attribute)

S

 	

 	sample_row_keys() (gcloud_bigtable.table.Table method)

 	set_cell() (gcloud_bigtable.row.Row method)

 	

 	start() (gcloud_bigtable.client.Client method)

 	stop() (gcloud_bigtable.client.Client method)

T

 	

 	Table (class in gcloud_bigtable.table)

 	table (gcloud_bigtable.column_family.ColumnFamily attribute)

 	

 	(gcloud_bigtable.row.Row attribute)

 	table() (gcloud_bigtable.cluster.Cluster method)

 	TABLE_ADMIN_HOST (in module gcloud_bigtable.client)

 	TABLE_ADMIN_PORT (in module gcloud_bigtable.client)

 	

 	table_stub (gcloud_bigtable.client.Client attribute)

 	timeout_seconds (gcloud_bigtable.cluster.Cluster attribute)

 	

 	(gcloud_bigtable.column_family.ColumnFamily attribute)

 	(gcloud_bigtable.row.Row attribute)

 	(gcloud_bigtable.table.Table attribute)

 	TimestampRange (class in gcloud_bigtable.row)

 	to_pb() (gcloud_bigtable.column_family.GarbageCollectionRule method)

 	

 	(gcloud_bigtable.column_family.GarbageCollectionRuleIntersection method)

 	(gcloud_bigtable.column_family.GarbageCollectionRuleUnion method)

 	(gcloud_bigtable.row.CellValueRange method)

 	(gcloud_bigtable.row.ColumnRange method)

 	(gcloud_bigtable.row.ConditionalRowFilter method)

 	(gcloud_bigtable.row.RowFilter method)

 	(gcloud_bigtable.row.RowFilterChain method)

 	(gcloud_bigtable.row.RowFilterUnion method)

 	(gcloud_bigtable.row.TimestampRange method)

U

 	

 	undelete() (gcloud_bigtable.cluster.Cluster method)

 	update() (gcloud_bigtable.cluster.Cluster method)

 	

 	(gcloud_bigtable.column_family.ColumnFamily method)

 	

 	update_from_read_rows() (gcloud_bigtable.row_data.PartialRowData method)

 Copyright 2015, Google.
 Created using Sphinx 1.3.1.

 _static/plus.png

_static/comment.png

_static/minus.png

_static/up-pressed.png

_static/down-pressed.png

_modules/gcloud_bigtable/row.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 		Module code »

 Source code for gcloud_bigtable.row

Copyright 2015 Google Inc. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""User friendly container for Google Cloud Bigtable Row."""

import six
import struct

from gcloud_bigtable._generated import bigtable_data_pb2 as data_pb2
from gcloud_bigtable._generated import (
 bigtable_service_messages_pb2 as messages_pb2)
from gcloud_bigtable._helpers import _parse_family_pb
from gcloud_bigtable._helpers import _timestamp_to_microseconds
from gcloud_bigtable._helpers import _to_bytes

_MAX_MUTATIONS = 100000

[docs]class Row(object):
 """Representation of a Google Cloud Bigtable Row.

 .. note::

 A :class:`Row` accumulates mutations locally via the :meth:`set_cell`,
 :meth:`delete`, :meth:`delete_cell` and :meth:`delete_cells` methods.
 To actually send these mutations to the Google Cloud Bigtable API, you
 must call :meth:`commit`. If a ``filter`` is set on the :class:`Row`,
 the mutations must have an associated state: :data:`True` or
 :data:`False`. The mutations will be applied conditionally, based on
 whether the filter matches any cells in the :class:`Row` or not.

 :type row_key: bytes
 :param row_key: The key for the current row.

 :type table: :class:`.table.Table`
 :param table: The table that owns the row.

 :type filter: :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion` or :class:`ConditionalRowFilter`
 :param filter: (Optional) Filter to be used for conditional mutations.
 If a filter is set, then the :class:`Row` will accumulate
 mutations for either a :data:`True` or :data:`False` state.
 When :meth:`commit`-ed, the mutations for the :data:`True`
 state will be applied if the filter matches any cells in the
 row, otherwise the :data:`False` state will be.
 """

 ALL_COLUMNS = object()
 """Sentinel value used to indicate all columns in a column family."""

 def __init__(self, row_key, table, filter=None):
 self._row_key = _to_bytes(row_key)
 self._table = table
 self._filter = filter
 self._rule_pb_list = []
 if self._filter is None:
 self._pb_mutations = []
 self._true_pb_mutations = None
 self._false_pb_mutations = None
 else:
 self._pb_mutations = None
 self._true_pb_mutations = []
 self._false_pb_mutations = []

 @property
 def table(self):
 """Getter for row's table.

 :rtype: :class:`.table.Table`
 :returns: The table stored on the row.
 """
 return self._table

 @property
 def row_key(self):
 """Getter for row's key.

 :rtype: bytes
 :returns: The key for the row.
 """
 return self._row_key

 @property
 def filter(self):
 """Getter for row's filter.

 :rtype: :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion`, :class:`ConditionalRowFilter` or
 :data:`NoneType <types.NoneType>`
 :returns: The filter for the row.
 """
 return self._filter

 @property
 def client(self):
 """Getter for row's client.

 :rtype: :class:`.client.Client`
 :returns: The client that owns this row.
 """
 return self.table.client

 @property
 def timeout_seconds(self):
 """Getter for row's default timeout seconds.

 :rtype: int
 :returns: The timeout seconds default.
 """
 return self.table.timeout_seconds

 def _get_mutations(self, state=None):
 """Gets the list of mutations for a given state.

 If the state is :data`None` but there is a filter set, then we've
 reached an invalid state. Similarly if no filter is set but the
 state is not :data:`None`.

 :type state: bool
 :param state: (Optional) The state that the mutation should be
 applied in. Unset if the mutation is not conditional,
 otherwise :data:`True` or :data:`False`.

 :rtype: list
 :returns: The list to add new mutations to (for the current state).
 :raises: :class:`ValueError <exceptions.ValueError>`
 """
 if state is None:
 if self.filter is not None:
 raise ValueError('A filter is set on the current row, but no '
 'state given for the mutation')
 return self._pb_mutations
 else:
 if self.filter is None:
 raise ValueError('No filter was set on the current row, but a '
 'state was given for the mutation')
 if state:
 return self._true_pb_mutations
 else:
 return self._false_pb_mutations

[docs] def set_cell(self, column_family_id, column, value, timestamp=None,
 state=None):
 """Sets a value in this row.

 The cell is determined by the ``row_key`` of the :class:`Row` and the
 ``column``. The ``column`` must be in an existing
 :class:`.column_family.ColumnFamily` (as determined by
 ``column_family_id``).

 .. note::

 This method adds a mutation to the accumulated mutations on this
 :class:`Row`, but does not make an API request. To actually
 send an API request (with the mutations) to the Google Cloud
 Bigtable API, call :meth:`commit`.

 :type column_family_id: str
 :param column_family_id: The column family that contains the column.
 Must be of the form
 ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type column: bytes
 :param column: The column within the column family where the cell
 is located.

 :type value: bytes or :class:`int`
 :param value: The value to set in the cell. If an integer is used,
 will be interpreted as a 64-bit big-endian signed
 integer (8 bytes).

 :type timestamp: :class:`datetime.datetime`
 :param timestamp: (Optional) The timestamp of the operation.

 :type state: bool
 :param state: (Optional) The state that the mutation should be
 applied in. Unset if the mutation is not conditional,
 otherwise :data:`True` or :data:`False`.
 """
 column = _to_bytes(column)
 if isinstance(value, six.integer_types):
 value = struct.pack('>q', value)
 value = _to_bytes(value)
 if timestamp is None:
 # Use -1 for current Bigtable server time.
 timestamp_micros = -1
 else:
 timestamp_micros = _timestamp_to_microseconds(timestamp)

 mutation_val = data_pb2.Mutation.SetCell(
 family_name=column_family_id,
 column_qualifier=column,
 timestamp_micros=timestamp_micros,
 value=value,
)
 mutation_pb = data_pb2.Mutation(set_cell=mutation_val)
 self._get_mutations(state).append(mutation_pb)

[docs] def append_cell_value(self, column_family_id, column, value):
 """Appends a value to an existing cell.

 .. note::

 This method adds a read-modify rule protobuf to the accumulated
 read-modify rules on this :class:`Row`, but does not make an API
 request. To actually send an API request (with the rules) to the
 Google Cloud Bigtable API, call :meth:`commit`.

 :type column_family_id: str
 :param column_family_id: The column family that contains the column.
 Must be of the form
 ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type column: bytes
 :param column: The column within the column family where the cell
 is located.

 :type value: bytes
 :param value: The value to append to the existing value in the cell. If
 the targeted cell is unset, it will be treated as
 containing the empty string.
 """
 column = _to_bytes(column)
 value = _to_bytes(value)
 rule_pb = data_pb2.ReadModifyWriteRule(family_name=column_family_id,
 column_qualifier=column,
 append_value=value)
 self._rule_pb_list.append(rule_pb)

[docs] def increment_cell_value(self, column_family_id, column, int_value):
 """Increments a value in an existing cell.

 Assumes the value in the cell is stored as a 64 bit integer
 serialized to bytes.

 .. note::

 This method adds a read-modify rule protobuf to the accumulated
 read-modify rules on this :class:`Row`, but does not make an API
 request. To actually send an API request (with the rules) to the
 Google Cloud Bigtable API, call :meth:`commit`.

 :type column_family_id: str
 :param column_family_id: The column family that contains the column.
 Must be of the form
 ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type column: bytes
 :param column: The column within the column family where the cell
 is located.

 :type int_value: int
 :param int_value: The value to increment the existing value in the cell
 by. If the targeted cell is unset, it will be treated
 as containing a zero. Otherwise, the targeted cell
 must contain an 8-byte value (interpreted as a 64-bit
 big-endian signed integer), or the entire request
 will fail.
 """
 column = _to_bytes(column)
 rule_pb = data_pb2.ReadModifyWriteRule(family_name=column_family_id,
 column_qualifier=column,
 increment_amount=int_value)
 self._rule_pb_list.append(rule_pb)

[docs] def delete(self, state=None):
 """Deletes this row from the table.

 .. note::

 This method adds a mutation to the accumulated mutations on this
 :class:`Row`, but does not make an API request. To actually
 send an API request (with the mutations) to the Google Cloud
 Bigtable API, call :meth:`commit`.

 :type state: bool
 :param state: (Optional) The state that the mutation should be
 applied in. Unset if the mutation is not conditional,
 otherwise :data:`True` or :data:`False`.
 """
 mutation_val = data_pb2.Mutation.DeleteFromRow()
 mutation_pb = data_pb2.Mutation(delete_from_row=mutation_val)
 self._get_mutations(state).append(mutation_pb)

[docs] def delete_cell(self, column_family_id, column, time_range=None,
 state=None):
 """Deletes cell in this row.

 .. note::

 This method adds a mutation to the accumulated mutations on this
 :class:`Row`, but does not make an API request. To actually
 send an API request (with the mutations) to the Google Cloud
 Bigtable API, call :meth:`commit`.

 :type column_family_id: str
 :param column_family_id: The column family that contains the column
 or columns with cells being deleted. Must be
 of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type column: bytes
 :param column: The column within the column family that will have a
 cell deleted.

 :type time_range: :class:`TimestampRange`
 :param time_range: (Optional) The range of time within which cells
 should be deleted.

 :type state: bool
 :param state: (Optional) The state that the mutation should be
 applied in. Unset if the mutation is not conditional,
 otherwise :data:`True` or :data:`False`.
 """
 self.delete_cells(column_family_id, [column], time_range=time_range,
 state=state)

[docs] def delete_cells(self, column_family_id, columns, time_range=None,
 state=None):
 """Deletes cells in this row.

 .. note::

 This method adds a mutation to the accumulated mutations on this
 :class:`Row`, but does not make an API request. To actually
 send an API request (with the mutations) to the Google Cloud
 Bigtable API, call :meth:`commit`.

 :type column_family_id: str
 :param column_family_id: The column family that contains the column
 or columns with cells being deleted. Must be
 of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type columns: :class:`list` of :class:`str` /
 :func:`unicode <unicode>`, or :class:`object`
 :param columns: The columns within the column family that will have
 cells deleted. If :attr:`Row.ALL_COLUMNS` is used then
 the entire column family will be deleted from the row.

 :type time_range: :class:`TimestampRange`
 :param time_range: (Optional) The range of time within which cells
 should be deleted.

 :type state: bool
 :param state: (Optional) The state that the mutation should be
 applied in. Unset if the mutation is not conditional,
 otherwise :data:`True` or :data:`False`.
 """
 mutations_list = self._get_mutations(state)
 if columns is self.ALL_COLUMNS:
 mutation_val = data_pb2.Mutation.DeleteFromFamily(
 family_name=column_family_id,
)
 mutation_pb = data_pb2.Mutation(delete_from_family=mutation_val)
 mutations_list.append(mutation_pb)
 else:
 delete_kwargs = {}
 if time_range is not None:
 delete_kwargs['time_range'] = time_range.to_pb()

 to_append = []
 for column in columns:
 column = _to_bytes(column)
 # time_range will never change if present, but the rest of
 # delete_kwargs will
 delete_kwargs.update(
 family_name=column_family_id,
 column_qualifier=column,
)
 mutation_val = data_pb2.Mutation.DeleteFromColumn(
 **delete_kwargs)
 mutation_pb = data_pb2.Mutation(
 delete_from_column=mutation_val)
 to_append.append(mutation_pb)

 # We don't add the mutations until all columns have been
 # processed without error.
 mutations_list.extend(to_append)

 def _commit_mutate(self, timeout_seconds=None):
 """Makes a ``MutateRow`` API request.

 Assumes no filter is set on the :class:`Row` and is meant to be called
 by :meth:`commit`.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on row.

 :raises: :class:`ValueError <exceptions.ValueError>` if the number of
 mutations exceeds the ``_MAX_MUTATIONS``.
 """
 mutations_list = self._get_mutations(None)
 num_mutations = len(mutations_list)
 if num_mutations == 0:
 return
 if num_mutations > _MAX_MUTATIONS:
 raise ValueError('%d total mutations exceed the maximum allowable '
 '%d.' % (num_mutations, _MAX_MUTATIONS))
 request_pb = messages_pb2.MutateRowRequest(
 table_name=self.table.name,
 row_key=self.row_key,
 mutations=mutations_list,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.data_stub.MutateRow.async(request_pb,
 timeout_seconds)
 # We expect a `._generated.empty_pb2.Empty`.
 response.result()

 def _commit_check_and_mutate(self, timeout_seconds=None):
 """Makes a ``CheckAndMutateRow`` API request.

 Assumes a filter is set on the :class:`Row` and is meant to be called
 by :meth:`commit`.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on row.

 :rtype: bool
 :returns: Flag indicating if the filter was matched (which also
 indicates which set of mutations were applied by the server).
 :raises: :class:`ValueError <exceptions.ValueError>` if the number of
 mutations exceeds the ``_MAX_MUTATIONS``.
 """
 true_mutations = self._get_mutations(True)
 false_mutations = self._get_mutations(False)
 num_true_mutations = len(true_mutations)
 num_false_mutations = len(false_mutations)
 if num_true_mutations == 0 and num_false_mutations == 0:
 return
 if (num_true_mutations > _MAX_MUTATIONS or
 num_false_mutations > _MAX_MUTATIONS):
 raise ValueError(
 'Exceed the maximum allowable mutations (%d). Had %s true '
 'mutations and %d false mutations.' % (
 _MAX_MUTATIONS, num_true_mutations, num_false_mutations))

 request_pb = messages_pb2.CheckAndMutateRowRequest(
 table_name=self.table.name,
 row_key=self.row_key,
 predicate_filter=self.filter.to_pb(),
 true_mutations=true_mutations,
 false_mutations=false_mutations,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.data_stub.CheckAndMutateRow.async(
 request_pb, timeout_seconds)
 # We expect a `.messages_pb2.CheckAndMutateRowResponse`
 check_and_mutate_row_response = response.result()
 return check_and_mutate_row_response.predicate_matched

[docs] def clear_mutations(self):
 """Removes all currently accumulated mutations on the current row."""
 if self.filter is None:
 self._pb_mutations[:] = []
 else:
 self._true_pb_mutations[:] = []
 self._false_pb_mutations[:] = []

[docs] def commit(self, timeout_seconds=None):
 """Makes a ``MutateRow`` or ``CheckAndMutateRow`` API request.

 If no mutations have been created in the row, no request is made.

 Mutations are applied atomically and in order, meaning that earlier
 mutations can be masked / negated by later ones. Cells already present
 in the row are left unchanged unless explicitly changed by a mutation.

 After committing the accumulated mutations, resets the local
 mutations to an empty list.

 In the case that a filter is set on the :class:`Row`, the mutations
 will be applied conditionally, based on whether the filter matches
 any cells in the :class:`Row` or not. (Each method which adds a
 mutation has a ``state`` parameter for this purpose.)

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on row.

 :rtype: :class:`bool` or :data:`NoneType <types.NoneType>`
 :returns: :data:`None` if there is no filter, otherwise a flag
 indicating if the filter was matched (which also
 indicates which set of mutations were applied by the server).
 :raises: :class:`ValueError <exceptions.ValueError>` if the number of
 mutations exceeds the ``_MAX_MUTATIONS``.
 """
 if self.filter is None:
 result = self._commit_mutate(timeout_seconds=timeout_seconds)
 else:
 result = self._commit_check_and_mutate(
 timeout_seconds=timeout_seconds)

 # Reset mutations after commit-ing request.
 self.clear_mutations()

 return result

[docs] def clear_modification_rules(self):
 """Removes all currently accumulated modifications on current row."""
 self._rule_pb_list[:] = []

[docs] def commit_modifications(self, timeout_seconds=None):
 """Makes a ``ReadModifyWriteRow`` API request.

 This commits modifications made by :meth:`append_cell_value` and
 :meth:`increment_cell_value`. If no modifications were made, makes
 no API request and just returns ``{}``.

 Modifies a row atomically, reading the latest existing timestamp/value
 from the specified columns and writing a new value by appending /
 incrementing. The new cell created uses either the current server time
 or the highest timestamp of a cell in that column (if it exceeds the
 server time).

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on row.

 :rtype: dict
 :returns: The new contents of all modified cells. Returned as a
 dictionary of column families, each of which holds a
 dictionary of columns. Each column contains a list of cells
 modified. Each cell is represented with a two-tuple with the
 value (in bytes) and the timestamp for the cell. For example:

 .. code:: python

 {
 u'col-fam-id': {
 b'col-name1': [
 (b'cell-val', datetime.datetime(...)),
 (b'cell-val-newer', datetime.datetime(...)),
],
 b'col-name2': [
 (b'altcol-cell-val', datetime.datetime(...)),
],
 },
 u'col-fam-id2': {
 b'col-name3-but-other-fam': [
 (b'foo', datetime.datetime(...)),
],
 },
 }
 """
 if len(self._rule_pb_list) == 0:
 return {}
 request_pb = messages_pb2.ReadModifyWriteRowRequest(
 table_name=self.table.name,
 row_key=self.row_key,
 rules=self._rule_pb_list,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.data_stub.ReadModifyWriteRow.async(
 request_pb, timeout_seconds)
 # We expect a `.data_pb2.Row`
 row_response = response.result()

 # Reset modifications after commit-ing request.
 self.clear_modification_rules()

 # NOTE: We expect row_response.key == self.row_key but don't check.
 return _parse_rmw_row_response(row_response)

NOTE: For developers, this class may seem to be a bit verbose, i.e.
a list of property names and **kwargs may do the trick better
than actually listing every single argument. However, for the sake
of users and documentation, listing every single argument is more
useful.

[docs]class RowFilter(object):
 """Basic filter to apply to cells in a row.

 These values can be combined via :class:`RowFilterChain`,
 :class:`RowFilterUnion` and :class:`ConditionalRowFilter`.

 The regex filters must be valid RE2 patterns. See Google's
 `RE2 reference`_ for the accepted syntax.

 .. _RE2 reference: https://github.com/google/re2/wiki/Syntax

 .. note::

 At most one of the keyword arguments can be specified at once.

 .. note::

 For :class:`bytes` regex filters (``row_key``, ``column_qualifier`` and
 ``value``), special care need be used with the expression used. Since
 each of these properties can contain arbitrary bytes, the ``\\C``
 escape sequence must be used if a true wildcard is desired. The ``.``
 character will not match the new line character ``\\n``, which may be
 present in a binary value.

 :type row_key_regex_filter: bytes
 :param row_key_regex_filter: A regular expression (RE2) to match cells from
 rows with row keys that satisfy this regex.
 For a ``CheckAndMutateRowRequest``, this
 filter is unnecessary since the row key is
 already specified.

 :type family_name_regex_filter: str
 :param family_name_regex_filter: A regular expression (RE2) to match cells
 from columns in a given column family. For
 technical reasons, the regex must not
 contain the ``':'`` character, even if it
 isnot being uses as a literal.

 :type column_qualifier_regex_filter: bytes
 :param column_qualifier_regex_filter: A regular expression (RE2) to match
 cells from column that match this
 regex (irrespective of column
 family).

 :type value_regex_filter: bytes
 :param value_regex_filter: A regular expression (RE2) to match cells with
 values that match this regex.

 :type column_range_filter: :class:`ColumnRange`
 :param column_range_filter: Range of columns to limit cells to.

 :type timestamp_range_filter: :class:`TimestampRange`
 :param timestamp_range_filter: Range of time that cells should match
 against.

 :type value_range_filter: :class:`CellValueRange`
 :param value_range_filter: Range of cell values to filter for.

 :type cells_per_row_offset_filter: int
 :param cells_per_row_offset_filter: Skips the first N cells of the row.

 :type cells_per_row_limit_filter: int
 :param cells_per_row_limit_filter: Matches only the first N cells of the
 row.

 :type cells_per_column_limit_filter: int
 :param cells_per_column_limit_filter: Matches only the most recent N cells
 within each column. This filters a
 (family name, column) pair, based on
 timestamps of each cell.

 :type row_sample_filter: float
 :param row_sample_filter: Non-deterministic filter. Matches all cells from
 a row with probability p, and matches no cells
 from the row with probability 1-p. (Here, the
 probability p is ``row_sample_filter``.)

 :type strip_value_transformer: bool
 :param strip_value_transformer: If :data:`True`, replaces each cell's value
 with the empty string. As the name
 indicates, this is more useful as a
 transformer than a generic query / filter.

 :raises: :class:`TypeError <exceptions.TypeError>` if not exactly one
 value set in the constructor.
 """

 def __init__(self,
 row_key_regex_filter=None,
 family_name_regex_filter=None,
 column_qualifier_regex_filter=None,
 value_regex_filter=None,
 column_range_filter=None,
 timestamp_range_filter=None,
 value_range_filter=None,
 cells_per_row_offset_filter=None,
 cells_per_row_limit_filter=None,
 cells_per_column_limit_filter=None,
 row_sample_filter=None,
 strip_value_transformer=None):
 self.row_key_regex_filter = row_key_regex_filter
 self.family_name_regex_filter = family_name_regex_filter
 self.column_qualifier_regex_filter = column_qualifier_regex_filter
 self.value_regex_filter = value_regex_filter
 self.column_range_filter = column_range_filter
 self.timestamp_range_filter = timestamp_range_filter
 self.value_range_filter = value_range_filter
 self.cells_per_row_offset_filter = cells_per_row_offset_filter
 self.cells_per_row_limit_filter = cells_per_row_limit_filter
 self.cells_per_column_limit_filter = cells_per_column_limit_filter
 self.row_sample_filter = row_sample_filter
 self.strip_value_transformer = strip_value_transformer
 self._check_single_value()

 def _check_single_value(self):
 """Checks that exactly one value is set on the instance.

 :raises: :class:`TypeError <exceptions.TypeError>` if not exactly one
 value set on the instance.
 """
 values_set = (
 int(self.row_key_regex_filter is not None) +
 int(self.family_name_regex_filter is not None) +
 int(self.column_qualifier_regex_filter is not None) +
 int(self.value_regex_filter is not None) +
 int(self.column_range_filter is not None) +
 int(self.timestamp_range_filter is not None) +
 int(self.value_range_filter is not None) +
 int(self.cells_per_row_offset_filter is not None) +
 int(self.cells_per_row_limit_filter is not None) +
 int(self.cells_per_column_limit_filter is not None) +
 int(self.row_sample_filter is not None) +
 int(self.strip_value_transformer is not None)
)
 if values_set != 1:
 raise TypeError('Exactly one value must be set in a row filter')

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (
 other.row_key_regex_filter == self.row_key_regex_filter and
 other.family_name_regex_filter == self.family_name_regex_filter and
 (other.column_qualifier_regex_filter ==
 self.column_qualifier_regex_filter) and
 other.value_regex_filter == self.value_regex_filter and
 other.column_range_filter == self.column_range_filter and
 other.timestamp_range_filter == self.timestamp_range_filter and
 other.value_range_filter == self.value_range_filter and
 (other.cells_per_row_offset_filter ==
 self.cells_per_row_offset_filter) and
 (other.cells_per_row_limit_filter ==
 self.cells_per_row_limit_filter) and
 (other.cells_per_column_limit_filter ==
 self.cells_per_column_limit_filter) and
 other.row_sample_filter == self.row_sample_filter and
 other.strip_value_transformer == self.strip_value_transformer
)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`RowFilter` to a protobuf.

 :rtype: :class:`.data_pb2.RowFilter`
 :returns: The converted current object.
 """
 self._check_single_value()
 row_filter_kwargs = {}
 if self.row_key_regex_filter is not None:
 row_filter_kwargs['row_key_regex_filter'] = _to_bytes(
 self.row_key_regex_filter)
 if self.family_name_regex_filter is not None:
 row_filter_kwargs['family_name_regex_filter'] = (
 self.family_name_regex_filter)
 if self.column_qualifier_regex_filter is not None:
 row_filter_kwargs['column_qualifier_regex_filter'] = _to_bytes(
 self.column_qualifier_regex_filter)
 if self.value_regex_filter is not None:
 row_filter_kwargs['value_regex_filter'] = _to_bytes(
 self.value_regex_filter)
 if self.column_range_filter is not None:
 row_filter_kwargs['column_range_filter'] = (
 self.column_range_filter.to_pb())
 if self.timestamp_range_filter is not None:
 row_filter_kwargs['timestamp_range_filter'] = (
 self.timestamp_range_filter.to_pb())
 if self.value_range_filter is not None:
 row_filter_kwargs['value_range_filter'] = (
 self.value_range_filter.to_pb())
 if self.cells_per_row_offset_filter is not None:
 row_filter_kwargs['cells_per_row_offset_filter'] = (
 self.cells_per_row_offset_filter)
 if self.cells_per_row_limit_filter is not None:
 row_filter_kwargs['cells_per_row_limit_filter'] = (
 self.cells_per_row_limit_filter)
 if self.cells_per_column_limit_filter is not None:
 row_filter_kwargs['cells_per_column_limit_filter'] = (
 self.cells_per_column_limit_filter)
 if self.row_sample_filter is not None:
 row_filter_kwargs['row_sample_filter'] = (
 self.row_sample_filter)
 if self.strip_value_transformer is not None:
 row_filter_kwargs['strip_value_transformer'] = (
 self.strip_value_transformer)
 return data_pb2.RowFilter(**row_filter_kwargs)

[docs]class TimestampRange(object):
 """Range of time with inclusive lower and exclusive upper bounds.

 :type start: :class:`datetime.datetime`
 :param start: (Optional) The (inclusive) lower bound of the timestamp
 range. If omitted, defaults to Unix epoch.

 :type end: :class:`datetime.datetime`
 :param end: (Optional) The (exclusive) upper bound of the timestamp
 range. If omitted, defaults to "infinity" (no upper bound).
 """

 def __init__(self, start=None, end=None):
 self.start = start
 self.end = end

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.start == self.start and
 other.end == self.end)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`TimestampRange` to a protobuf.

 :rtype: :class:`.data_pb2.TimestampRange`
 :returns: The converted current object.
 """
 timestamp_range_kwargs = {}
 if self.start is not None:
 timestamp_range_kwargs['start_timestamp_micros'] = (
 _timestamp_to_microseconds(self.start))
 if self.end is not None:
 timestamp_range_kwargs['end_timestamp_micros'] = (
 _timestamp_to_microseconds(self.end))
 return data_pb2.TimestampRange(**timestamp_range_kwargs)

[docs]class ColumnRange(object):
 """A range of columns to restrict to in a row filter.

 Both the start and end column can be included or excluded in the range.
 By default, we include them both, but this can be changed with optional
 flags.

 :type column_family_id: str
 :param column_family_id: The column family that contains the columns. Must
 be of the form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type start_column: bytes
 :param start_column: The start of the range of columns. If no value is
 used, it is interpreted as the empty string
 (inclusive) by the backend.

 :type end_column: bytes
 :param end_column: The end of the range of columns. If no value is used, it
 is interpreted as the infinite string (exclusive) by the
 backend.

 :type inclusive_start: bool
 :param inclusive_start: Boolean indicating if the start column should be
 included in the range (or excluded).

 :type inclusive_end: bool
 :param inclusive_end: Boolean indicating if the end column should be
 included in the range (or excluded).
 """

 def __init__(self, column_family_id, start_column=None, end_column=None,
 inclusive_start=True, inclusive_end=True):
 self.column_family_id = column_family_id
 self.start_column = start_column
 self.end_column = end_column
 self.inclusive_start = inclusive_start
 self.inclusive_end = inclusive_end

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.column_family_id == self.column_family_id and
 other.start_column == self.start_column and
 other.end_column == self.end_column and
 other.inclusive_start == self.inclusive_start and
 other.inclusive_end == self.inclusive_end)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`ColumnRange` to a protobuf.

 :rtype: :class:`.data_pb2.ColumnRange`
 :returns: The converted current object.
 """
 column_range_kwargs = {'family_name': self.column_family_id}
 if self.start_column is not None:
 if self.inclusive_start:
 key = 'start_qualifier_inclusive'
 else:
 key = 'start_qualifier_exclusive'
 column_range_kwargs[key] = _to_bytes(self.start_column)
 if self.end_column is not None:
 if self.inclusive_end:
 key = 'end_qualifier_inclusive'
 else:
 key = 'end_qualifier_exclusive'
 column_range_kwargs[key] = _to_bytes(self.end_column)
 return data_pb2.ColumnRange(**column_range_kwargs)

[docs]class CellValueRange(object):
 """A range of values to restrict to in a row filter.

 With only match cells that have values in this range.

 Both the start and end value can be included or excluded in the range.
 By default, we include them both, but this can be changed with optional
 flags.

 :type start_value: bytes
 :param start_value: The start of the range of values. If no value is
 used, it is interpreted as the empty string
 (inclusive) by the backend.

 :type end_value: bytes
 :param end_value: The end of the range of values. If no value is used, it
 is interpreted as the infinite string (exclusive) by the
 backend.

 :type inclusive_start: bool
 :param inclusive_start: Boolean indicating if the start value should be
 included in the range (or excluded).

 :type inclusive_end: bool
 :param inclusive_end: Boolean indicating if the end value should be
 included in the range (or excluded).
 """

 def __init__(self, start_value=None, end_value=None,
 inclusive_start=True, inclusive_end=True):
 self.start_value = start_value
 self.end_value = end_value
 self.inclusive_start = inclusive_start
 self.inclusive_end = inclusive_end

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.start_value == self.start_value and
 other.end_value == self.end_value and
 other.inclusive_start == self.inclusive_start and
 other.inclusive_end == self.inclusive_end)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`CellValueRange` to a protobuf.

 :rtype: :class:`.data_pb2.ValueRange`
 :returns: The converted current object.
 """
 value_range_kwargs = {}
 if self.start_value is not None:
 if self.inclusive_start:
 key = 'start_value_inclusive'
 else:
 key = 'start_value_exclusive'
 value_range_kwargs[key] = _to_bytes(self.start_value)
 if self.end_value is not None:
 if self.inclusive_end:
 key = 'end_value_inclusive'
 else:
 key = 'end_value_exclusive'
 value_range_kwargs[key] = _to_bytes(self.end_value)
 return data_pb2.ValueRange(**value_range_kwargs)

[docs]class RowFilterChain(object):
 """Chain of row filters.

 Sends rows through several filters in sequence. The filters are "chained"
 together to process a row. After the first filter is applied, the second
 is applied to the filtered output and so on for subsequent filters.

 :type filters: list
 :param filters: List of :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion` and/or
 :class:`ConditionalRowFilter`
 """

 def __init__(self, filters=None):
 self.filters = filters

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return other.filters == self.filters

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`RowFilterChain` to a protobuf.

 :rtype: :class:`.data_pb2.RowFilter`
 :returns: The converted current object.
 """
 chain = data_pb2.RowFilter.Chain(
 filters=[row_filter.to_pb() for row_filter in self.filters])
 return data_pb2.RowFilter(chain=chain)

[docs]class RowFilterUnion(object):
 """Union of row filters.

 Sends rows through several filters simultaneously, then
 merges / interleaves all the filtered results together.

 If multiple cells are produced with the same column and timestamp,
 they will all appear in the output row in an unspecified mutual order.

 :type filters: list
 :param filters: List of :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion` and/or
 :class:`ConditionalRowFilter`
 """

 def __init__(self, filters=None):
 self.filters = filters

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return other.filters == self.filters

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`RowFilterUnion` to a protobuf.

 :rtype: :class:`.data_pb2.RowFilter`
 :returns: The converted current object.
 """
 interleave = data_pb2.RowFilter.Interleave(
 filters=[row_filter.to_pb() for row_filter in self.filters])
 return data_pb2.RowFilter(interleave=interleave)

[docs]class ConditionalRowFilter(object):
 """Conditional filter

 Executes one of two filters based on another filter. If the ``base_filter``
 returns any cells in the row, then ``true_filter`` is executed. If not,
 then ``false_filter`` is executed.

 .. note::

 The ``base_filter`` does not execute atomically with the true and false
 filters, which may lead to inconsistent or unexpected results.

 Additionally, executing a :class:`ConditionalRowFilter` has poor
 performance on the server, especially when ``false_filter`` is set.

 :type base_filter: :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion` or :class:`ConditionalRowFilter`
 :param base_filter: The filter to condition on before executing the
 true/false filters.

 :type true_filter: :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion` or :class:`ConditionalRowFilter`
 :param true_filter: (Optional) The filter to execute if there are any cells
 matching ``base_filter``. If not provided, no results
 will be returned in the true case.

 :type false_filter: :class:`RowFilter`, :class:`RowFilterChain`,
 :class:`RowFilterUnion` or
 :class:`ConditionalRowFilter`
 :param false_filter: (Optional) The filter to execute if there are no cells
 matching ``base_filter``. If not provided, no results
 will be returned in the false case.
 """

 def __init__(self, base_filter, true_filter=None, false_filter=None):
 self.base_filter = base_filter
 self.true_filter = true_filter
 self.false_filter = false_filter

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.base_filter == self.base_filter and
 other.true_filter == self.true_filter and
 other.false_filter == self.false_filter)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`ConditionalRowFilter` to a protobuf.

 :rtype: :class:`.data_pb2.RowFilter`
 :returns: The converted current object.
 """
 condition_kwargs = {'predicate_filter': self.base_filter.to_pb()}
 if self.true_filter is not None:
 condition_kwargs['true_filter'] = self.true_filter.to_pb()
 if self.false_filter is not None:
 condition_kwargs['false_filter'] = self.false_filter.to_pb()
 condition = data_pb2.RowFilter.Condition(**condition_kwargs)
 return data_pb2.RowFilter(condition=condition)

def _parse_rmw_row_response(row_response):
 """Parses the response to a ``ReadModifyWriteRow`` request.

 :type row_response: :class:`.data_pb2.Row`
 :param row_response: The response row (with only modified cells) from a
 ``ReadModifyWriteRow`` request.

 :rtype: dict
 :returns: The new contents of all modified cells. Returned as a
 dictionary of column families, each of which holds a
 dictionary of columns. Each column contains a list of cells
 modified. Each cell is represented with a two-tuple with the
 value (in bytes) and the timestamp for the cell. For example:

 .. code:: python

 {
 u'col-fam-id': {
 b'col-name1': [
 (b'cell-val', datetime.datetime(...)),
 (b'cell-val-newer', datetime.datetime(...)),
],
 b'col-name2': [
 (b'altcol-cell-val', datetime.datetime(...)),
],
 },
 u'col-fam-id2': {
 b'col-name3-but-other-fam': [
 (b'foo', datetime.datetime(...)),
],
 },
 }
 """
 result = {}
 for column_family in row_response.families:
 column_family_id, curr_family = _parse_family_pb(column_family)
 result[column_family_id] = curr_family
 return result

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_modules/gcloud_bigtable/column_family.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 		Module code »

 Source code for gcloud_bigtable.column_family

Copyright 2015 Google Inc. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""User friendly container for Google Cloud Bigtable Column Family."""

from gcloud_bigtable._generated import bigtable_table_data_pb2 as data_pb2
from gcloud_bigtable._generated import (
 bigtable_table_service_messages_pb2 as messages_pb2)
from gcloud_bigtable._helpers import _duration_pb_to_timedelta
from gcloud_bigtable._helpers import _timedelta_to_duration_pb

[docs]class GarbageCollectionRule(object):
 """Table garbage collection rule.

 Cells in the table fitting the rule will be deleted during
 garbage collection.

 These values can be combined via :class:`GarbageCollectionRuleUnion` and
 :class:`GarbageCollectionRuleIntersection`.

 .. note::

 At most one of ``max_num_versions`` and ``max_age`` can be specified
 at once.

 .. note::

 A string ``gc_expression`` can also be used with API requests, but
 that value would be superceded by a ``gc_rule``. As a result, we
 don't support that feature and instead support via this native
 object.

 :type max_num_versions: int
 :param max_num_versions: The maximum number of versions

 :type max_age: :class:`datetime.timedelta`
 :param max_age: The maximum age allowed for a cell in the table.

 :raises: :class:`TypeError <exceptions.TypeError>` if both
 ``max_num_versions`` and ``max_age`` are set.
 """

 def __init__(self, max_num_versions=None, max_age=None):
 self.max_num_versions = max_num_versions
 self.max_age = max_age
 self._check_single_value()

 def _check_single_value(self):
 """Checks that at most one value is set on the instance.

 :raises: :class:`TypeError <exceptions.TypeError>` if not exactly one
 value set on the instance.
 """
 if self.max_num_versions is not None and self.max_age is not None:
 raise TypeError('At most one of max_num_versions and '
 'max_age can be set')

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.max_num_versions == self.max_num_versions and
 other.max_age == self.max_age)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the :class:`GarbageCollectionRule` to a protobuf.

 :rtype: :class:`.data_pb2.GcRule`
 :returns: The converted current object.
 """
 self._check_single_value()
 gc_rule_kwargs = {}
 if self.max_num_versions is not None:
 gc_rule_kwargs['max_num_versions'] = self.max_num_versions
 if self.max_age is not None:
 gc_rule_kwargs['max_age'] = _timedelta_to_duration_pb(self.max_age)
 return data_pb2.GcRule(**gc_rule_kwargs)

[docs]class GarbageCollectionRuleUnion(object):
 """Union of garbage collection rules.

 :type rules: list
 :param rules: List of :class:`GarbageCollectionRule`,
 :class:`GarbageCollectionRuleUnion` and/or
 :class:`GarbageCollectionRuleIntersection`
 """

 def __init__(self, rules=None):
 self.rules = rules

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return other.rules == self.rules

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the union into a single gc rule as a protobuf.

 :rtype: :class:`.data_pb2.GcRule`
 :returns: The converted current object.
 """
 union = data_pb2.GcRule.Union(
 rules=[rule.to_pb() for rule in self.rules])
 return data_pb2.GcRule(union=union)

[docs]class GarbageCollectionRuleIntersection(object):
 """Intersection of garbage collection rules.

 :type rules: list
 :param rules: List of :class:`GarbageCollectionRule`,
 :class:`GarbageCollectionRuleUnion` and/or
 :class:`GarbageCollectionRuleIntersection`
 """

 def __init__(self, rules=None):
 self.rules = rules

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return other.rules == self.rules

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def to_pb(self):
 """Converts the intersection into a single gc rule as a protobuf.

 :rtype: :class:`.data_pb2.GcRule`
 :returns: The converted current object.
 """
 intersection = data_pb2.GcRule.Intersection(
 rules=[rule.to_pb() for rule in self.rules])
 return data_pb2.GcRule(intersection=intersection)

[docs]class ColumnFamily(object):
 """Representation of a Google Cloud Bigtable Column Family.

 We can use a :class:`ColumnFamily` to:

 * :meth:`create` itself
 * :meth:`update` itself
 * :meth:`delete` itself

 :type column_family_id: str
 :param column_family_id: The ID of the column family. Must be of the
 form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type table: :class:`.table.Table`
 :param table: The table that owns the column family.

 :type gc_rule: :class:`GarbageCollectionRule`,
 :class:`GarbageCollectionRuleUnion` or
 :class:`GarbageCollectionRuleIntersection`
 :param gc_rule: (Optional) The garbage collection settings for this
 column family.
 """

 def __init__(self, column_family_id, table, gc_rule=None):
 self.column_family_id = column_family_id
 self._table = table
 self.gc_rule = gc_rule

 @property
 def table(self):
 """Getter for column family's table.

 :rtype: :class:`.table.Table`
 :returns: The table stored on the column family.
 """
 return self._table

 @property
 def client(self):
 """Getter for column family's client.

 :rtype: :class:`.client.Client`
 :returns: The client that owns this column family.
 """
 return self.table.client

 @property
 def timeout_seconds(self):
 """Getter for column family's default timeout seconds.

 :rtype: int
 :returns: The timeout seconds default.
 """
 return self.table.timeout_seconds

 @property
 def name(self):
 """Column family name used in requests.

 .. note::

 This property will not change if ``column_family_id`` does not, but
 the return value is not cached.

 The table name is of the form

 ``"projects/../zones/../clusters/../tables/../columnFamilies/.."``

 :rtype: str
 :returns: The column family name.
 """
 return self.table.name + '/columnFamilies/' + self.column_family_id

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.column_family_id == self.column_family_id and
 other.gc_rule == self.gc_rule and
 other.table == self.table)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def create(self, timeout_seconds=None):
 """Create this column family.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 column family.
 """
 if self.gc_rule is None:
 column_family = data_pb2.ColumnFamily()
 else:
 column_family = data_pb2.ColumnFamily(gc_rule=self.gc_rule.to_pb())
 request_pb = messages_pb2.CreateColumnFamilyRequest(
 name=self.table.name,
 column_family_id=self.column_family_id,
 column_family=column_family,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.CreateColumnFamily.async(
 request_pb, timeout_seconds)
 # We expect a `.data_pb2.ColumnFamily`
 response.result()

[docs] def update(self, timeout_seconds=None):
 """Update this column family.

 .. note::

 The Bigtable Table Admin API currently returns

 ``BigtableTableService.UpdateColumnFamily is not yet implemented``

 when this method is used. It's unclear when this method will
 actually be supported by the API.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 column family.
 """
 request_kwargs = {'name': self.name}
 if self.gc_rule is not None:
 request_kwargs['gc_rule'] = self.gc_rule.to_pb()
 request_pb = data_pb2.ColumnFamily(**request_kwargs)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.UpdateColumnFamily.async(
 request_pb, timeout_seconds)
 # We expect a `.data_pb2.ColumnFamily`
 response.result()

[docs] def delete(self, timeout_seconds=None):
 """Delete this column family.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 column family.
 """
 request_pb = messages_pb2.DeleteColumnFamilyRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.DeleteColumnFamily.async(
 request_pb, timeout_seconds)
 # We expect a `._generated.empty_pb2.Empty`
 response.result()

def _gc_rule_from_pb(gc_rule_pb):
 """Convert a protobuf GC rule to a Python version.

 :type gc_rule_pb: :class:`.data_pb2.GcRule`
 :param gc_rule_pb: The GC rule to convert.

 :rtype: :class:`GarbageCollectionRule`,
 :class:`GarbageCollectionRuleUnion`,
 :class:`GarbageCollectionRuleIntersection` or
 :data:`NoneType <types.NoneType>`
 :returns: An instance of one of the native rules defined
 in :module:`column_family` or :data:`None` if no values were
 set on the protobuf passed in.
 :raises: :class:`ValueError <exceptions.ValueError>` if more than one
 property has been set on the GC rule.
 """
 all_fields = [field.name for field in gc_rule_pb._fields]
 if len(all_fields) == 0:
 return None
 elif len(all_fields) > 1:
 raise ValueError('At most one field can be set on a GC rule.')

 field_name = all_fields[0]
 if field_name == 'max_num_versions':
 return GarbageCollectionRule(
 max_num_versions=gc_rule_pb.max_num_versions)
 elif field_name == 'max_age':
 max_age = _duration_pb_to_timedelta(gc_rule_pb.max_age)
 return GarbageCollectionRule(max_age=max_age)
 elif field_name == 'union':
 all_rules = gc_rule_pb.union.rules
 return GarbageCollectionRuleUnion(
 rules=[_gc_rule_from_pb(rule) for rule in all_rules])
 elif field_name == 'intersection':
 all_rules = gc_rule_pb.intersection.rules
 return GarbageCollectionRuleIntersection(
 rules=[_gc_rule_from_pb(rule) for rule in all_rules])

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_modules/index.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 All modules for which code is available

		gcloud_bigtable.client

		gcloud_bigtable.cluster

		gcloud_bigtable.column_family

		gcloud_bigtable.row

		gcloud_bigtable.row_data

		gcloud_bigtable.table

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_modules/gcloud_bigtable/client.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 		Module code »

 Source code for gcloud_bigtable.client

Copyright 2015 Google Inc. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""Parent client for calling the Google Cloud Bigtable API.

This is the base from which all interactions with the API occur.

In the hierarchy of API concepts

* a :class:`Client` owns a :class:`.Cluster`
* a :class:`.Cluster` owns a :class:`Table <.table.Table>`
* a :class:`Table <.table.Table>` owns a
 :class:`ColumnFamily <.column_family.ColumnFamily>`
* a :class:`Table <.table.Table>` owns a :class:`Row <.row.Row>`
 (and all the cells in the row)
"""

import os
import six
import socket

from oauth2client.client import GoogleCredentials
from oauth2client.client import SignedJwtAssertionCredentials
from oauth2client.client import _get_application_default_credential_from_file

try:
 from google.appengine.api import app_identity
except ImportError:
 app_identity = None

from gcloud_bigtable._generated import bigtable_cluster_data_pb2 as data_pb2
from gcloud_bigtable._generated import (
 bigtable_cluster_service_messages_pb2 as messages_pb2)
from gcloud_bigtable._generated import bigtable_cluster_service_pb2
from gcloud_bigtable._generated import bigtable_service_pb2
from gcloud_bigtable._generated import bigtable_table_service_pb2
from gcloud_bigtable._generated import operations_pb2
from gcloud_bigtable._helpers import make_stub
from gcloud_bigtable.cluster import Cluster

TABLE_STUB_FACTORY = (bigtable_table_service_pb2.
 early_adopter_create_BigtableTableService_stub)
TABLE_ADMIN_HOST = 'bigtabletableadmin.googleapis.com'
"""Table Admin API request host."""
TABLE_ADMIN_PORT = 443
"""Table Admin API request port."""

CLUSTER_STUB_FACTORY = (bigtable_cluster_service_pb2.
 early_adopter_create_BigtableClusterService_stub)
CLUSTER_ADMIN_HOST = 'bigtableclusteradmin.googleapis.com'
"""Cluster Admin API request host."""
CLUSTER_ADMIN_PORT = 443
"""Cluster Admin API request port."""

DATA_STUB_FACTORY = (bigtable_service_pb2.
 early_adopter_create_BigtableService_stub)
DATA_API_HOST = 'bigtable.googleapis.com'
"""Data API request host."""
DATA_API_PORT = 443
"""Data API request port."""

OPERATIONS_STUB_FACTORY = operations_pb2.early_adopter_create_Operations_stub

ADMIN_SCOPE = 'https://www.googleapis.com/auth/cloud-bigtable.admin'
"""Scope for interacting with the Cluster Admin and Table Admin APIs."""
DATA_SCOPE = 'https://www.googleapis.com/auth/cloud-bigtable.data'
"""Scope for reading and writing table data."""
READ_ONLY_SCOPE = ('https://www.googleapis.com/auth/'
 'cloud-bigtable.data.readonly')
"""Scope for reading table data."""

PROJECT_ENV_VAR = 'GCLOUD_PROJECT'
"""Environment variable used to provide an implicit project ID."""

DEFAULT_TIMEOUT_SECONDS = 10
"""The default timeout to use for API requests."""

DEFAULT_USER_AGENT = 'gcloud-bigtable-python'
"""The default user agent for API requests."""

def _project_id_from_environment():
 """Attempts to get the project ID from an environment variable.

 :rtype: :class:`str` or :data:`NoneType <types.NoneType>`
 :returns: The project ID provided or :data:`None`
 """
 return os.getenv(PROJECT_ENV_VAR)

def _project_id_from_app_engine():
 """Gets the App Engine application ID if it can be inferred.

 :rtype: :class:`str` or :data:`NoneType <types.NoneType>`
 :returns: App Engine application ID if running in App Engine,
 else :data:`None`.
 """
 if app_identity is None:
 return None

 return app_identity.get_application_id()

def _project_id_from_compute_engine():
 """Gets the Compute Engine project ID if it can be inferred.

 Uses 169.254.169.254 for the metadata server to avoid request
 latency from DNS lookup.

 See https://cloud.google.com/compute/docs/metadata#metadataserver
 for information about this IP address. (This IP is also used for
 Amazon EC2 instances, so the metadata flavor is crucial.)

 See https://github.com/google/oauth2client/issues/93 for context about
 DNS latency.

 :rtype: :class:`str` or :data:`NoneType <types.NoneType>`
 :returns: Compute Engine project ID if the metadata service is available,
 else :data:`None`.
 """
 host = '169.254.169.254'
 uri_path = '/computeMetadata/v1/project/project-id'
 headers = {'Metadata-Flavor': 'Google'}
 connection = six.moves.http_client.HTTPConnection(host, timeout=0.1)

 try:
 connection.request('GET', uri_path, headers=headers)
 response = connection.getresponse()
 if response.status == 200:
 return response.read()
 except socket.error: # socket.timeout or socket.error(64, 'Host is down')
 pass
 finally:
 connection.close()

def _determine_project_id(project_id=None):
 """Determine the project ID from the input or environment.

 When checking the environment, the following precedence is observed:

 * GCLOUD_PROJECT environment variable
 * Google App Engine application ID
 * Google Compute Engine project ID (from metadata server)

 :type project_id: str
 :param project_id: (Optional) The ID of the project which owns the
 clusters, tables and data. If not provided, will attempt
 to determine from the environment.

 :rtype: str
 :returns: The project ID provided or inferred from the environment.
 :raises: :class:`EnvironmentError` if the project ID was not
 passed in and can't be inferred from the environment.
 """
 if project_id is None:
 project_id = _project_id_from_environment()

 if project_id is None:
 project_id = _project_id_from_app_engine()

 if project_id is None:
 project_id = _project_id_from_compute_engine()

 if project_id is None:
 raise EnvironmentError('Project ID was not provided and could not '
 'be determined from environment.')

 return project_id

[docs]class Client(object):
 """Client for interacting with Google Cloud Bigtable API.

 :type credentials:
 :class:`OAuth2Credentials <oauth2client.client.OAuth2Credentials>` or
 :data:`NoneType <types.NoneType>`
 :param credentials: (Optional) The OAuth2 Credentials to use for this
 cluster. If not provided, defaulst to the Google
 Application Default Credentials.

 :type project_id: :class:`str` or :func:`unicode <unicode>`
 :param project_id: (Optional) The ID of the project which owns the
 clusters, tables and data. If not provided, will
 attempt to determine from the environment.

 :type read_only: bool
 :param read_only: (Optional) Boolean indicating if the data scope should be
 for reading only (or for writing as well). Defaults to
 :data:`False`.

 :type admin: bool
 :param admin: (Optional) Boolean indicating if the client will be used to
 interact with the Cluster Admin or Table Admin APIs. This
 requires the :const:`ADMIN_SCOPE`. Defaults to :data:`False`.

 :type user_agent: str
 :param user_agent: (Optional) The user agent to be used with API request.
 Defaults to :const:`DEFAULT_USER_AGENT`.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out. If not
 passed, defaults to
 :const:`DEFAULT_TIMEOUT_SECONDS`.

 :raises: :class:`ValueError <exceptions.ValueError>` if both ``read_only``
 and ``admin`` are :data:`True`
 """

 def __init__(self, credentials=None, project_id=None,
 read_only=False, admin=False, user_agent=DEFAULT_USER_AGENT,
 timeout_seconds=DEFAULT_TIMEOUT_SECONDS):
 if read_only and admin:
 raise ValueError('A read-only client cannot also perform'
 'administrative actions.')

 if credentials is None:
 credentials = GoogleCredentials.get_application_default()

 scopes = []
 if read_only:
 scopes.append(READ_ONLY_SCOPE)
 else:
 scopes.append(DATA_SCOPE)

 if admin:
 scopes.append(ADMIN_SCOPE)

 self._admin = bool(admin)
 self._credentials = credentials.create_scoped(scopes)
 self._project_id = _determine_project_id(project_id)
 self.user_agent = user_agent
 self.timeout_seconds = timeout_seconds

 # These will be set in start().
 self._data_stub = None
 self._cluster_stub = None
 self._operations_stub = None
 self._table_stub = None

 @classmethod
[docs] def from_service_account_json(cls, json_credentials_path, project_id=None,
 read_only=False, admin=False):
 """Factory to retrieve JSON credentials while creating client object.

 :type json_credentials_path: str
 :param json_credentials_path: The path to a private key file (this file
 was given to you when you created the
 service account). This file must contain
 a JSON object with a private key and
 other credentials information (downloaded
 from the Google APIs console).

 :type project_id: str
 :param project_id: The ID of the project which owns the clusters,
 tables and data. Will be passed to :class:`Client`
 constructor.

 :type read_only: bool
 :param read_only: Boolean indicating if the data scope should be
 for reading only (or for writing as well). Will be
 passed to :class:`Client` constructor.

 :type admin: bool
 :param admin: Boolean indicating if the client will be used to
 interact with the Cluster Admin or Table Admin APIs. Will
 be passed to :class:`Client` constructor.

 :rtype: :class:`Client`
 :returns: The client created with the retrieved JSON credentials.
 """
 credentials = _get_application_default_credential_from_file(
 json_credentials_path)
 return cls(credentials=credentials, project_id=project_id,
 read_only=read_only, admin=admin)

 @classmethod
[docs] def from_service_account_p12(cls, client_email, private_key_path,
 project_id=None, read_only=False,
 admin=False):
 """Factory to retrieve P12 credentials while creating client object.

 .. note::
 Unless you have an explicit reason to use a PKCS12 key for your
 service account, we recommend using a JSON key.

 :type client_email: str
 :param client_email: The e-mail attached to the service account.

 :type private_key_path: str
 :param private_key_path: The path to a private key file (this file was
 given to you when you created the service
 account). This file must be in P12 format.

 :type project_id: str
 :param project_id: The ID of the project which owns the clusters,
 tables and data. Will be passed to :class:`Client`
 constructor.

 :type read_only: bool
 :param read_only: Boolean indicating if the data scope should be
 for reading only (or for writing as well). Will be
 passed to :class:`Client` constructor.

 :type admin: bool
 :param admin: Boolean indicating if the client will be used to
 interact with the Cluster Admin or Table Admin APIs. Will
 be passed to :class:`Client` constructor.

 :rtype: :class:`Client`
 :returns: The client created with the retrieved P12 credentials.
 """
 credentials = SignedJwtAssertionCredentials(
 service_account_name=client_email,
 private_key=_get_contents(private_key_path))
 return cls(credentials=credentials, project_id=project_id,
 read_only=read_only, admin=admin)

 @property
 def credentials(self):
 """Getter for client's credentials.

 :rtype:
 :class:`OAuth2Credentials <oauth2client.client.OAuth2Credentials>`
 :returns: The credentials stored on the client.
 """
 return self._credentials

 @property
 def project_id(self):
 """Getter for client's project ID.

 :rtype: str
 :returns: The project ID stored on the client.
 """
 return self._project_id

 @property
 def project_name(self):
 """Project name to be used with Cluster Admin API.

 .. note::
 This property will not change if ``project_id`` does not, but the
 return value is not cached.

 The project name is of the form

 ``"projects/{project_id}"``

 :rtype: str
 :returns: The project name to be used with the Cloud Bigtable Admin
 API RPC service.
 """
 return 'projects/' + self._project_id

 @property
 def data_stub(self):
 """Getter for the gRPC stub used for the Data API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 :raises: :class:`ValueError <exceptions.ValueError>` if the current
 client has not been :meth:`start`-ed.
 """
 if self._data_stub is None:
 raise ValueError('Client has not been started.')
 return self._data_stub

 @property
 def cluster_stub(self):
 """Getter for the gRPC stub used for the Cluster Admin API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 :raises: :class:`ValueError <exceptions.ValueError>` if the current
 client is not an admin client or if it has not been
 :meth:`start`-ed.
 """
 if not self._admin:
 raise ValueError('Client is not an admin client.')
 if self._cluster_stub is None:
 raise ValueError('Client has not been started.')
 return self._cluster_stub

 @property
 def operations_stub(self):
 """Getter for the gRPC stub used for the Operations API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 :raises: :class:`ValueError <exceptions.ValueError>` if the current
 client is not an admin client or if it has not been
 :meth:`start`-ed.
 """
 if not self._admin:
 raise ValueError('Client is not an admin client.')
 if self._operations_stub is None:
 raise ValueError('Client has not been started.')
 return self._operations_stub

 @property
 def table_stub(self):
 """Getter for the gRPC stub used for the Table Admin API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 :raises: :class:`ValueError <exceptions.ValueError>` if the current
 client is not an admin client or if it has not been
 :meth:`start`-ed.
 """
 if not self._admin:
 raise ValueError('Client is not an admin client.')
 if self._table_stub is None:
 raise ValueError('Client has not been started.')
 return self._table_stub

 def _make_data_stub(self):
 """Creates gRPC stub to make requests to the Data API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 """
 return make_stub(self, DATA_STUB_FACTORY,
 DATA_API_HOST, DATA_API_PORT)

 def _make_cluster_stub(self):
 """Creates gRPC stub to make requests to the Cluster Admin API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 """
 return make_stub(self, CLUSTER_STUB_FACTORY,
 CLUSTER_ADMIN_HOST, CLUSTER_ADMIN_PORT)

 def _make_operations_stub(self):
 """Creates gRPC stub to make requests to the Operations API.

 These are for long-running operations of the Cluster Admin API,
 hence the host and port matching.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 """
 return make_stub(self, OPERATIONS_STUB_FACTORY,
 CLUSTER_ADMIN_HOST, CLUSTER_ADMIN_PORT)

 def _make_table_stub(self):
 """Creates gRPC stub to make requests to the Table Admin API.

 :rtype: :class:`grpc.early_adopter.implementations._Stub`
 :returns: A gRPC stub object.
 """
 return make_stub(self, TABLE_STUB_FACTORY,
 TABLE_ADMIN_HOST, TABLE_ADMIN_PORT)

[docs] def start(self):
 """Prepare the client to make requests.

 Activates gRPC contexts for making requests to the Bigtable
 Service(s).
 """
 self._data_stub = self._make_data_stub()
 self._data_stub.__enter__()
 if self._admin:
 self._cluster_stub = self._make_cluster_stub()
 self._operations_stub = self._make_operations_stub()
 self._table_stub = self._make_table_stub()

 self._cluster_stub.__enter__()
 self._operations_stub.__enter__()
 self._table_stub.__enter__()

[docs] def stop(self):
 """Closes all the open gRPC clients."""
 # When exit-ing, we pass None as the exception type, value and
 # traceback to __exit__.
 self._data_stub.__exit__(None, None, None)
 if self._admin:
 self._cluster_stub.__exit__(None, None, None)
 self._operations_stub.__exit__(None, None, None)
 self._table_stub.__exit__(None, None, None)

 self._data_stub = None
 self._cluster_stub = None
 self._operations_stub = None
 self._table_stub = None

[docs] def cluster(self, zone, cluster_id, display_name=None, serve_nodes=3):
 """Factory to create a cluster associated with this client.

 :type zone: str
 :param zone: The name of the zone where the cluster resides.

 :type cluster_id: str
 :param cluster_id: The ID of the cluster.

 :type display_name: str
 :param display_name: (Optional) The display name for the cluster in the
 Cloud Console UI. (Must be between 4 and 30
 characters.) If this value is not set in the
 constructor, will fall back to the cluster ID.

 :type serve_nodes: int
 :param serve_nodes: (Optional) The number of nodes in the cluster.
 Defaults to 3.

 :rtype: :class:`.Cluster`
 :returns: The cluster owned by this client.
 """
 return Cluster(zone, cluster_id, self,
 display_name=display_name, serve_nodes=serve_nodes)

[docs] def list_zones(self, timeout_seconds=None):
 """Lists zones associated with project.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on client.

 :rtype: list
 :returns: The names (as :class:`str`) of the zones
 :raises: :class:`ValueError <exceptions.ValueError>` if one of the
 zones is not in ``OK`` state.
 """
 request_pb = messages_pb2.ListZonesRequest(name=self.project_name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.cluster_stub.ListZones.async(request_pb,
 timeout_seconds)
 # We expect a `.messages_pb2.ListZonesResponse`
 list_zones_response = response.result()

 result = []
 for zone in list_zones_response.zones:
 if zone.status != data_pb2.Zone.OK:
 raise ValueError('Zone %s not in OK state' % (
 zone.display_name,))
 result.append(zone.display_name)
 return result

[docs] def list_clusters(self, timeout_seconds=None):
 """Lists clusters owned by the project.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on client.

 :rtype: tuple
 :returns: A pair of results, the first is a list of :class:`.Cluster` s
 returned and the second is a list of strings (the failed
 zones in the request).
 """
 request_pb = messages_pb2.ListClustersRequest(name=self.project_name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.cluster_stub.ListClusters.async(request_pb,
 timeout_seconds)
 # We expect a `.messages_pb2.ListClustersResponse`
 list_clusters_response = response.result()

 failed_zones = [zone.display_name
 for zone in list_clusters_response.failed_zones]
 clusters = [Cluster.from_pb(cluster_pb, self)
 for cluster_pb in list_clusters_response.clusters]
 return clusters, failed_zones

def _get_contents(filename):
 """Get the contents of a file.

 This is just implemented so we can stub out while testing.

 :type filename: :class:`str` or :func:`unicode <unicode>`
 :param filename: The name of a file to open.

 :rtype: bytes
 :returns: The bytes loaded from the file.
 """
 with open(filename, 'rb') as file_obj:
 return file_obj.read()

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_modules/gcloud_bigtable/row_data.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 		Module code »

 Source code for gcloud_bigtable.row_data

Copyright 2015 Google Inc. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""Container for Google Cloud Bigtable Cells and Streaming Row Contents."""

import copy

from gcloud_bigtable._helpers import _microseconds_to_timestamp

[docs]class Cell(object):
 """Representation of a Google Cloud Bigtable Cell.

 :type value: bytes
 :param value: The value stored in the cell.

 :type timestamp: :class:`datetime.datetime`
 :param timestamp: The timestamp when the cell was stored.
 """

 def __init__(self, value, timestamp):
 self.value = value
 self.timestamp = timestamp

 @classmethod
[docs] def from_pb(cls, cell_pb):
 """Create a new cell from a Cell protobuf.

 :type cell_pb: :class:`._generated.bigtable_data_pb2.Cell`
 :param cell_pb: The protobuf to convert.

 :rtype: :class:`Cell`
 :returns: The cell corresponding to the protobuf.
 """
 timestamp = _microseconds_to_timestamp(cell_pb.timestamp_micros)
 return cls(cell_pb.value, timestamp)

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.value == self.value and
 other.timestamp == self.timestamp)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs]class PartialRowData(object):
 """Representation of partial row in a Google Cloud Bigtable Table.

 These are expected to be updated directly from a
 :class:`._generated.bigtable_service_messages_pb2.ReadRowsResponse`

 :type row_key: bytes
 :param row_key: The key for the row holding the (partial) data.
 """

 def __init__(self, row_key):
 self._row_key = row_key
 self._cells = {}
 self._committed = False

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other._row_key == self._row_key and
 other._committed == self._committed and
 other._cells == self._cells)

 def __ne__(self, other):
 return not self.__eq__(other)

 @property
 def cells(self):
 """Property returning all the cells accumulated on this partial row.

 :rtype: dict
 :returns: Dictionary of the :class:`Cell` objects accumulated. This
 dictionary has two-levels of keys (first for column families
 and second for column names/qualifiers within a family). For
 a given column, a list of :class:`Cell` objects is stored.
 """
 return copy.deepcopy(self._cells)

 @property
 def row_key(self):
 """Getter for the current (partial) row's key.

 :rtype: bytes
 :returns: The current (partial) row's key.
 """
 return self._row_key

 @property
 def committed(self):
 """Getter for the committed status of the (partial) row.

 :rtype: bool
 :returns: The committed status of the (partial) row.
 """
 return self._committed

[docs] def clear(self):
 """Clears all cells that have been added."""
 self._committed = False
 self._cells.clear()

 def _handle_commit_row(self, chunk, index, last_chunk_index):
 """Handles a ``commit_row`` chunk.

 :type chunk: ``ReadRowsResponse.Chunk``
 :param chunk: The chunk being handled.

 :type index: int
 :param index: The current index of the chunk.

 :type last_chunk_index: int
 :param last_chunk_index: The index of the last chunk.

 :raises: :class:`ValueError <exceptions.ValueError>` if the value of
 ``commit_row`` is :data:`False` or if the chunk passed is not
 the last chunk in a response.
 """
 # NOTE: We assume the caller has checked that the ``ONEOF`` property
 # for ``chunk`` is ``commit_row``.
 if not chunk.commit_row:
 raise ValueError('Received commit_row that was False.')

 if index != last_chunk_index:
 raise ValueError('Commit row chunk was not the last chunk')
 else:
 self._committed = True

 def _handle_reset_row(self, chunk):
 """Handles a ``reset_row`` chunk.

 :type chunk: ``ReadRowsResponse.Chunk``
 :param chunk: The chunk being handled.

 :raises: :class:`ValueError <exceptions.ValueError>` if the value of
 ``reset_row`` is :data:`False`
 """
 # NOTE: We assume the caller has checked that the ``ONEOF`` property
 # for ``chunk`` is ``reset_row``.
 if not chunk.reset_row:
 raise ValueError('Received reset_row that was False.')

 self.clear()

 def _handle_row_contents(self, chunk):
 """Handles a ``row_contents`` chunk.

 :type chunk: ``ReadRowsResponse.Chunk``
 :param chunk: The chunk being handled.
 """
 # NOTE: We assume the caller has checked that the ``ONEOF`` property
 # for ``chunk`` is ``row_contents``.

 # chunk.row_contents is ._generated.bigtable_data_pb2.Family
 column_family_id = chunk.row_contents.name
 column_family_dict = self._cells.setdefault(column_family_id, {})
 for column in chunk.row_contents.columns:
 cells = [Cell.from_pb(cell) for cell in column.cells]

 column_name = column.qualifier
 column_cells = column_family_dict.setdefault(column_name, [])
 column_cells.extend(cells)

[docs] def update_from_read_rows(self, read_rows_response_pb):
 """Updates the current row from a ``ReadRows`` response.

 :type read_rows_response_pb:
 :class:`._generated.bigtable_service_messages_pb2.ReadRowsResponse`
 :param read_rows_response_pb: A response streamed back as part of a
 ``ReadRows`` request.

 :raises: :class:`ValueError <exceptions.ValueError>` if the current
 partial row has already been committed, if the row key on the
 response doesn't match the current one or if there is a chunk
 encountered with an unexpected ``ONEOF`` protobuf property.
 """
 if self._committed:
 raise ValueError('The row has been committed')

 if read_rows_response_pb.row_key != self.row_key:
 raise ValueError('Response row key (%r) does not match current '
 'one (%r).' % (read_rows_response_pb.row_key,
 self.row_key))

 last_chunk_index = len(read_rows_response_pb.chunks) - 1
 for index, chunk in enumerate(read_rows_response_pb.chunks):
 chunk_property = chunk.WhichOneof('chunk')
 if chunk_property == 'row_contents':
 self._handle_row_contents(chunk)
 elif chunk_property == 'reset_row':
 self._handle_reset_row(chunk)
 elif chunk_property == 'commit_row':
 self._handle_commit_row(chunk, index, last_chunk_index)
 else:
 # NOTE: This includes chunk_property == None since we always
 # want a value to be set
 raise ValueError('Unexpected chunk property: %s' % (
 chunk_property,))

[docs]class PartialRowsData(object):
 """Convenience wrapper for consuming a ``ReadRows`` streaming response.

 :type response_iterator:
 :class:`grpc.framework.alpha._reexport._CancellableIterator`
 :param response_iterator: A streaming iterator returned from a
 ``ReadRows`` request.
 """

 def __init__(self, response_iterator):
 # We expect an iterator of `data_messages_pb2.ReadRowsResponse`
 self._response_iterator = response_iterator
 self._rows = {}

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return other._response_iterator == self._response_iterator

 def __ne__(self, other):
 return not self.__eq__(other)

 @property
 def rows(self):
 """Property returning all rows accumulated from the stream.

 :rtype: dict
 :returns: Dictionary of :class:`PartialRowData`.
 """
 # NOTE: To avoid duplication large objects, this is just the
 # mutable private data.
 return self._rows

[docs] def cancel(self):
 """Cancels the iterator, closing the stream."""
 self._response_iterator.cancel()

[docs] def consume_next(self):
 """Consumes the next ``ReadRowsResponse`` from the stream.

 Parses the response and stores it as a :class:`PartialRowData`
 in a dictionary owned by this object.

 :raises: :class:`StopIteration <exceptions.StopIteration>` if the
 response iterator has no more responses to stream.
 """
 read_rows_response = self._response_iterator.next()
 row_key = read_rows_response.row_key
 partial_row = self._rows.get(row_key)
 if partial_row is None:
 partial_row = self._rows[row_key] = PartialRowData(row_key)
 # NOTE: This is not atomic in the case of failures.
 partial_row.update_from_read_rows(read_rows_response)

[docs] def consume_all(self, max_loops=None):
 """Consume the streamed responses until there are no more.

 This simply calls :meth:`consume_next` until there are no
 more to consume.

 :type max_loops: int
 :param max_loops: (Optional) Maximum number of times to try to consume
 an additional ``ReadRowsResponse``. You can use this
 to avoid long wait times.
 """
 curr_loop = 0
 if max_loops is None:
 max_loops = float('inf')
 while curr_loop < max_loops:
 curr_loop += 1
 try:
 self.consume_next()
 except StopIteration:
 break

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_modules/gcloud_bigtable/cluster.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 		Module code »

 Source code for gcloud_bigtable.cluster

Copyright 2015 Google Inc. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""User friendly container for Google Cloud Bigtable Cluster."""

import re

from gcloud_bigtable._generated import bigtable_cluster_data_pb2 as data_pb2
from gcloud_bigtable._generated import (
 bigtable_cluster_service_messages_pb2 as messages_pb2)
from gcloud_bigtable._generated import (
 bigtable_table_service_messages_pb2 as table_messages_pb2)
from gcloud_bigtable._generated import operations_pb2
from gcloud_bigtable._helpers import _parse_pb_any_to_native
from gcloud_bigtable._helpers import _pb_timestamp_to_datetime
from gcloud_bigtable._helpers import _require_pb_property
from gcloud_bigtable.table import Table

_CLUSTER_NAME_RE = re.compile(r'^projects/(?P<project_id>[^/]+)/'
 r'zones/(?P<zone>[^/]+)/clusters/'
 r'(?P<cluster_id>[a-z][-a-z0-9]*)$')
_OPERATION_NAME_RE = re.compile(r'^operations/projects/([^/]+)/zones/([^/]+)/'
 r'clusters/([a-z][-a-z0-9]*)/operations/'
 r'(?P<operation_id>\d+)$')

def _prepare_create_request(cluster):
 """Creates a protobuf request for a CreateCluster request.

 :type cluster: :class:`Cluster`
 :param cluster: The cluster to be created.

 :rtype: :class:`.messages_pb2.CreateClusterRequest`
 :returns: The CreateCluster request object containing the cluster info.
 """
 zone_full_name = ('projects/' + cluster.project_id +
 '/zones/' + cluster.zone)
 return messages_pb2.CreateClusterRequest(
 name=zone_full_name,
 cluster_id=cluster.cluster_id,
 cluster=data_pb2.Cluster(
 display_name=cluster.display_name,
 serve_nodes=cluster.serve_nodes,
),
)

def _process_operation(operation_pb):
 """Processes a create protobuf response.

 :type operation_pb: :class:`operations_pb2.Operation`
 :param operation_pb: The long-running operation response from a
 Create/Update/Undelete cluster request.

 :rtype: tuple
 :returns: A pair of an integer and datetime stamp. The integer is the ID
 of the operation (``operation_id``) and the timestamp when
 the create operation began (``operation_begin``).
 :raises: :class:`ValueError <exceptions.ValueError>` if the operation name
 doesn't match the :data:`_OPERATION_NAME_RE` regex.
 """
 match = _OPERATION_NAME_RE.match(operation_pb.name)
 if match is None:
 raise ValueError('Cluster create operation name was not in the '
 'expected format.', operation_pb.name)
 operation_id = int(match.group('operation_id'))

 request_metadata = _parse_pb_any_to_native(operation_pb.metadata)
 operation_begin = _pb_timestamp_to_datetime(
 request_metadata.request_time)

 return operation_id, operation_begin

[docs]class Cluster(object):
 """Representation of a Google Cloud Bigtable Cluster.

 We can use a :class:`Cluster` to:

 * :meth:`reload` itself
 * :meth:`create` itself
 * Check if an :meth:`operation_finished` (each of :meth:`create`,
 :meth:`update` and :meth:`undelete` return with long-running operations)
 * :meth:`update` itself
 * :meth:`delete` itself
 * :meth:`undelete` itself

 .. note::

 For now, we leave out the properties ``hdd_bytes`` and ``ssd_bytes``
 (both integers) and also the ``default_storage_type`` (an enum)
 which if not sent will end up as :data:`.data_pb2.STORAGE_SSD`.

 :type zone: str
 :param zone: The name of the zone where the cluster resides.

 :type cluster_id: str
 :param cluster_id: The ID of the cluster.

 :type client: :class:`.client.Client`
 :param client: The client that owns the cluster. Provides
 authorization and a project ID.

 :type display_name: str
 :param display_name: (Optional) The display name for the cluster in the
 Cloud Console UI. (Must be between 4 and 30
 characters.) If this value is not set in the
 constructor, will fall back to the cluster ID.

 :type serve_nodes: int
 :param serve_nodes: (Optional) The number of nodes in the cluster.
 Defaults to 3.
 """

 def __init__(self, zone, cluster_id, client,
 display_name=None, serve_nodes=3):
 self.zone = zone
 self.cluster_id = cluster_id
 self.display_name = display_name or cluster_id
 self.serve_nodes = serve_nodes
 self._client = client
 self._operation_type = None
 self._operation_id = None
 self._operation_begin = None

 def _update_from_pb(self, cluster_pb):
 self.display_name = _require_pb_property(
 cluster_pb, 'display_name', None)
 self.serve_nodes = _require_pb_property(
 cluster_pb, 'serve_nodes', None)

 @classmethod
[docs] def from_pb(cls, cluster_pb, client):
 """Creates a cluster instance from a protobuf.

 :type cluster_pb: :class:`bigtable_cluster_data_pb2.Cluster`
 :param cluster_pb: A cluster protobuf object.

 :type client: :class:`.client.Client`
 :param client: The client that owns the cluster.

 :rtype: :class:`Cluster`
 :returns: The cluster parsed from the protobuf response.
 :raises: :class:`ValueError <exceptions.ValueError>` if the cluster
 name does not match :data:`_CLUSTER_NAME_RE` or if the parsed
 project ID does not match the project ID on the client.
 """
 match = _CLUSTER_NAME_RE.match(cluster_pb.name)
 if match is None:
 raise ValueError('Cluster protobuf name was not in the '
 'expected format.', cluster_pb.name)
 if match.group('project_id') != client.project_id:
 raise ValueError('Project ID on cluster does not match the '
 'project ID on the client')

 result = cls(match.group('zone'), match.group('cluster_id'), client)
 result._update_from_pb(cluster_pb)
 return result

 @property
 def client(self):
 """Getter for cluster's client.

 :rtype: :class:`.client.Client`
 :returns: The client stored on the cluster.
 """
 return self._client

 @property
 def project_id(self):
 """Getter for cluster's project ID.

 :rtype: str
 :returns: The project ID for the cluster (is stored on the client).
 """
 return self._client.project_id

 @property
 def timeout_seconds(self):
 """Getter for cluster's default timeout seconds.

 :rtype: int
 :returns: The timeout seconds default stored on the cluster's client.
 """
 return self._client.timeout_seconds

 @property
 def name(self):
 """Cluster name used in requests.

 .. note::
 This property will not change if ``zone`` and ``cluster_id`` do not,
 but the return value is not cached.

 The cluster name is of the form

 ``"projects/{project_id}/zones/{zone}/clusters/{cluster_id}"``

 :rtype: str
 :returns: The cluster name.
 """
 return (self.client.project_name + '/zones/' + self.zone +
 '/clusters/' + self.cluster_id)

[docs] def table(self, table_id):
 """Factory to create a table associated with this cluster.

 :type table_id: str
 :param table_id: The ID of the table.

 :rtype: :class:`.Table`
 :returns: The table owned by this cluster.
 """
 return Table(table_id, self)

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 # NOTE: This does not compare the configuration values, such as
 # the serve_nodes or display_name. This is intentional, since
 # the same cluster can be in different states if not
 # synchronized. This suggests we should use `project_id`
 # instead of `client` for the third comparison.
 return (other.zone == self.zone and
 other.cluster_id == self.cluster_id and
 other.client == self.client)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def reload(self, timeout_seconds=None):
 """Reload the metadata for this cluster.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.
 """
 request_pb = messages_pb2.GetClusterRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.cluster_stub.GetCluster.async(request_pb,
 timeout_seconds)
 # We expect a `._generated.bigtable_cluster_data_pb2.Cluster`.
 cluster_pb = response.result()

 # NOTE: _update_from_pb does not check that the project, zone and
 # cluster ID on the response match the request.
 self._update_from_pb(cluster_pb)

[docs] def operation_finished(self, timeout_seconds=None):
 """Check if the current operation has finished.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.

 :rtype: bool
 :returns: A boolean indicating if the current operation has completed.
 :raises: :class:`ValueError <exceptions.ValueError>` if there is no
 current operation set.
 """
 if self._operation_id is None:
 raise ValueError('There is no current operation.')

 operation_name = ('operations/' + self.name +
 '/operations/%d' % (self._operation_id,))
 request_pb = operations_pb2.GetOperationRequest(name=operation_name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.operations_stub.GetOperation.async(
 request_pb, timeout_seconds)
 # We expact a `._generated.operations_pb2.Operation`.
 operation_pb = response.result()

 if operation_pb.done:
 self._operation_type = None
 self._operation_id = None
 self._operation_begin = None
 return True
 else:
 return False

[docs] def create(self, timeout_seconds=None):
 """Create this cluster.

 .. note::

 Uses the ``project_id``, ``zone`` and ``cluster_id`` on the current
 :class:`Cluster` in addition to the ``display_name`` and
 ``serve_nodes``. If you'd like to change them before creating,
 reset the values via

 .. code:: python

 cluster.display_name = 'New display name'
 cluster.cluster_id = 'i-changed-my-mind'

 before calling :meth:`create`.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.
 """
 request_pb = _prepare_create_request(self)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.cluster_stub.CreateCluster.async(
 request_pb, timeout_seconds)
 # We expect an `operations_pb2.Operation`.
 cluster_pb = response.result()

 self._operation_type = 'create'
 self._operation_id, self._operation_begin = _process_operation(
 cluster_pb.current_operation)

[docs] def update(self, timeout_seconds=None):
 """Update this cluster.

 .. note::

 Updates the ``display_name`` and ``serve_nodes``. If you'd like to
 change them before updating, reset the values via

 .. code:: python

 cluster.display_name = 'New display name'
 cluster.serve_nodes = 3

 before calling :meth:`update`.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.
 """
 request_pb = data_pb2.Cluster(
 name=self.name,
 display_name=self.display_name,
 serve_nodes=self.serve_nodes,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.cluster_stub.UpdateCluster.async(
 request_pb, timeout_seconds)
 # We expect a `._generated.bigtable_cluster_data_pb2.Cluster`.
 cluster_pb = response.result()

 self._operation_type = 'update'
 self._operation_id, self._operation_begin = _process_operation(
 cluster_pb.current_operation)

[docs] def delete(self, timeout_seconds=None):
 """Delete this cluster.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.
 """
 request_pb = messages_pb2.DeleteClusterRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.cluster_stub.DeleteCluster.async(
 request_pb, timeout_seconds)
 # We expect a `._generated.empty_pb2.Empty`
 response.result()

[docs] def undelete(self, timeout_seconds=None):
 """Undelete this cluster.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.
 """
 request_pb = messages_pb2.UndeleteClusterRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.cluster_stub.UndeleteCluster.async(
 request_pb, timeout_seconds)
 # We expect a `._generated.operations_pb2.Operation`
 operation_pb2 = response.result()

 self._operation_type = 'undelete'
 self._operation_id, self._operation_begin = _process_operation(
 operation_pb2)

[docs] def list_tables(self, timeout_seconds=None):
 """List the tables in this cluster.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on
 cluster.

 :rtype: list of :class:`.Table`
 :returns: The list of tables owned by the cluster.
 :raises: :class:`ValueError <exceptions.ValueError>` if one of the
 returned tables has a name that is not of the expected format.
 """
 request_pb = table_messages_pb2.ListTablesRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.ListTables.async(request_pb,
 timeout_seconds)
 # We expect a `table_messages_pb2.ListTablesResponse`
 table_list_pb = response.result()

 result = []
 for table_pb in table_list_pb.tables:
 before, table_id = table_pb.name.split(
 self.name + '/tables/', 1)
 if before != '':
 raise ValueError('Table name %s not of expected format' % (
 table_pb.name,))
 result.append(self.table(table_id))

 return result

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

search.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_modules/gcloud_bigtable/table.html

 Navigation

 		
 index

 		
 modules |

 		Google Cloud Bigtable 0.0.1 documentation »

 		Module code »

 Source code for gcloud_bigtable.table

Copyright 2015 Google Inc. All rights reserved.
#
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
#
http://www.apache.org/licenses/LICENSE-2.0
#
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

"""User friendly container for Google Cloud Bigtable Table."""

from gcloud_bigtable._generated import bigtable_data_pb2 as data_pb2
from gcloud_bigtable._generated import (
 bigtable_service_messages_pb2 as data_messages_pb2)
from gcloud_bigtable._generated import (
 bigtable_table_service_messages_pb2 as messages_pb2)
from gcloud_bigtable._helpers import _to_bytes
from gcloud_bigtable.column_family import ColumnFamily
from gcloud_bigtable.column_family import _gc_rule_from_pb
from gcloud_bigtable.row import Row
from gcloud_bigtable.row_data import PartialRowData
from gcloud_bigtable.row_data import PartialRowsData

[docs]class Table(object):
 """Representation of a Google Cloud Bigtable Table.

 .. note::

 We don't define any properties on a table other than the name. As
 the proto says, in a request:

 The ``name`` field of the Table and all of its ColumnFamilies must
 be left blank, and will be populated in the response.

 This leaves only the ``current_operation`` and ``granularity``
 fields. The ``current_operation`` is only used for responses while
 ``granularity`` is an enum with only one value.

 We can use a :class:`Table` to:

 * :meth:`create` the table
 * :meth:`rename` the table
 * :meth:`delete` the table
 * :meth:`list_column_families` in the table

 :type table_id: str
 :param table_id: The ID of the table.

 :type cluster: :class:`.cluster.Cluster`
 :param cluster: The cluster that owns the table.
 """

 def __init__(self, table_id, cluster):
 self.table_id = table_id
 self._cluster = cluster

 @property
 def cluster(self):
 """Getter for table's cluster.

 :rtype: :class:`.cluster.Cluster`
 :returns: The cluster stored on the table.
 """
 return self._cluster

 @property
 def client(self):
 """Getter for table's client.

 :rtype: :class:`.client.Client`
 :returns: The client that owns this table.
 """
 return self.cluster.client

 @property
 def timeout_seconds(self):
 """Getter for table's default timeout seconds.

 :rtype: int
 :returns: The timeout seconds default stored on the table's client.
 """
 return self._cluster.timeout_seconds

 @property
 def name(self):
 """Table name used in requests.

 .. note::

 This property will not change if ``table_id`` does not, but the
 return value is not cached.

 The table name is of the form

 ``"projects/../zones/../clusters/../tables/{table_id}"``

 :rtype: str
 :returns: The table name.
 """
 return self.cluster.name + '/tables/' + self.table_id

[docs] def column_family(self, column_family_id, gc_rule=None):
 """Factory to create a column family associated with this table.

 :type column_family_id: str
 :param column_family_id: The ID of the column family. Must be of the
 form ``[_a-zA-Z0-9][-_.a-zA-Z0-9]*``.

 :type gc_rule: :class:`.column_family.GarbageCollectionRule`,
 :class:`.column_family.GarbageCollectionRuleUnion` or
 :class:`.column_family.GarbageCollectionRuleIntersection`
 :param gc_rule: (Optional) The garbage collection settings for this
 column family.

 :rtype: :class:`.column_family.ColumnFamily`
 :returns: A column family owned by this table.
 """
 return ColumnFamily(column_family_id, self, gc_rule=gc_rule)

[docs] def row(self, row_key):
 """Factory to create a row associated with this table.

 :type row_key: bytes
 :param row_key: The key for the row being created.

 :rtype: :class:`.row.Row`
 :returns: A row owned by this table.
 """
 return Row(row_key, self)

 def __eq__(self, other):
 if not isinstance(other, self.__class__):
 return False
 return (other.table_id == self.table_id and
 other.cluster == self.cluster)

 def __ne__(self, other):
 return not self.__eq__(other)

[docs] def create(self, initial_split_keys=None, timeout_seconds=None):
 """Creates this table.

 .. note::

 Though a :class:`._generated.bigtable_table_data_pb2.Table` is also
 allowed (as the ``table`` property) in a create table request, we
 do not support it in this method. As mentioned in the
 :class:`Table` docstring, the name is the only useful property in
 the table proto.

 .. note::

 A create request returns a
 :class:`._generated.bigtable_table_data_pb2.Table` but we don't use
 this response. The proto definition allows for the inclusion of a
 ``current_operation`` in the response, but in example usage so far,
 it seems the Bigtable API does not return any operation.

 :type initial_split_keys: list
 :param initial_split_keys: (Optional) List of row keys that will be
 used to initially split the table into
 several tablets (Tablets are similar to
 HBase regions). Given two split keys,
 ``"s1"`` and ``"s2"``, three tablets will be
 created, spanning the key ranges:
 ``[, s1)``, ``[s1, s2)``, ``[s2,)``.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.
 """
 request_pb = messages_pb2.CreateTableRequest(
 initial_split_keys=initial_split_keys or [],
 name=self.cluster.name,
 table_id=self.table_id,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.CreateTable.async(request_pb,
 timeout_seconds)
 # We expect a `._generated.bigtable_table_data_pb2.Table`
 response.result()

[docs] def rename(self, new_table_id, timeout_seconds=None):
 """Rename this table.

 .. note::

 This cannot be used to move tables between clusters,
 zones, or projects.

 .. note::

 The Bigtable Table Admin API currently returns

 ``BigtableTableService.RenameTable is not yet implemented``

 when this method is used. It's unclear when this method will
 actually be supported by the API.

 :type new_table_id: str
 :param new_table_id: The new name table ID.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.
 """
 request_pb = messages_pb2.RenameTableRequest(
 name=self.name,
 new_id=new_table_id,
)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.RenameTable.async(request_pb,
 timeout_seconds)
 # We expect a `._generated.empty_pb2.Empty`
 response.result()

 self.table_id = new_table_id

[docs] def delete(self, timeout_seconds=None):
 """Delete this table.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.
 """
 request_pb = messages_pb2.DeleteTableRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.DeleteTable.async(request_pb,
 timeout_seconds)
 # We expect a `._generated.empty_pb2.Empty`
 response.result()

[docs] def list_column_families(self, timeout_seconds=None):
 """Check if this table exists.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.

 :rtype: dictionary with string as keys and
 :class:`.column_family.ColumnFamily` as values
 :returns: List of column families attached to this table.
 :raises: :class:`ValueError <exceptions.ValueError>` if the column
 family name from the response does not agree with the computed
 name from the column family ID.
 """
 request_pb = messages_pb2.GetTableRequest(name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response = self.client.table_stub.GetTable.async(request_pb,
 timeout_seconds)
 # We expect a `._generated.bigtable_table_data_pb2.Table`
 table_pb = response.result()

 result = {}
 for column_family_id, value_pb in table_pb.column_families.items():
 gc_rule = _gc_rule_from_pb(value_pb.gc_rule)
 column_family = self.column_family(column_family_id,
 gc_rule=gc_rule)
 if column_family.name != value_pb.name:
 raise ValueError('Column family name %s does not agree with '
 'name from request: %s.' % (
 column_family.name, value_pb.name))
 result[column_family_id] = column_family
 return result

[docs] def read_row(self, row_key, filter=None, timeout_seconds=None):
 """Read a single row from this table.

 :type row_key: bytes
 :param row_key: The key of the row to read from.

 :type filter: :class:`.row.RowFilter`, :class:`.row.RowFilterChain`,
 :class:`.row.RowFilterUnion` or
 :class:`.row.ConditionalRowFilter`
 :param filter: (Optional) The filter to apply to the contents of the
 row. If unset, returns the entire row.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.

 :rtype: :class:`.PartialRowData`
 :returns: The contents of the row.
 :raises: :class:`ValueError <exceptions.ValueError>` if a commit row
 chunk is never encountered.
 """
 request_pb = _create_row_request(self.name, row_key=row_key,
 filter=filter)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response_iterator = self.client.data_stub.ReadRows(request_pb,
 timeout_seconds)
 # We expect an iterator of `data_messages_pb2.ReadRowsResponse`
 result = PartialRowData(row_key)
 for read_rows_response in response_iterator:
 result.update_from_read_rows(read_rows_response)

 # Make sure the result was committed by the back-end.
 if not result.committed:
 raise ValueError('The row remains partial / is not committed.')
 return result

[docs] def read_rows(self, start_key=None, end_key=None,
 allow_row_interleaving=None, limit=None, filter=None,
 timeout_seconds=None):
 """Read rows from this table.

 :type start_key: bytes
 :param start_key: (Optional) The beginning of a range of row keys to
 read from. The range will include ``start_key``. If
 left empty, will be interpreted as the empty string.

 :type end_key: bytes
 :param end_key: (Optional) The end of a range of row keys to read from.
 The range will not include ``end_key``. If left empty,
 will be interpreted as an infinite string.

 :type filter: :class:`.row.RowFilter`, :class:`.row.RowFilterChain`,
 :class:`.row.RowFilterUnion` or
 :class:`.row.ConditionalRowFilter`
 :param filter: (Optional) The filter to apply to the contents of the
 specified row(s). If unset, reads every column in
 each row.

 :type allow_row_interleaving: bool
 :param allow_row_interleaving: (Optional) By default, rows are read
 sequentially, producing results which
 are guaranteed to arrive in increasing
 row order. Setting
 ``allow_row_interleaving`` to
 :data:`True` allows multiple rows to be
 interleaved in the response stream,
 which increases throughput but breaks
 this guarantee, and may force the
 client to use more memory to buffer
 partially-received rows.

 :type limit: int
 :param limit: (Optional) The read will terminate after committing to N
 rows' worth of results. The default (zero) is to return
 all results. Note that if ``allow_row_interleaving`` is
 set to :data:`True`, partial results may be returned for
 more than N rows. However, only N ``commit_row`` chunks
 will be sent.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.

 :rtype: :class:`.PartialRowsData`
 :returns: A :class:`.PartialRowsData` convenience wrapper for consuming
 the streamed results.
 """
 request_pb = _create_row_request(
 self.name, start_key=start_key, end_key=end_key, filter=filter,
 allow_row_interleaving=allow_row_interleaving, limit=limit)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response_iterator = self.client.data_stub.ReadRows(request_pb,
 timeout_seconds)
 # We expect an iterator of `data_messages_pb2.ReadRowsResponse`
 return PartialRowsData(response_iterator)

[docs] def sample_row_keys(self, timeout_seconds=None):
 """Read a sample of row keys in the table.

 The returned row keys will delimit contiguous sections of the table of
 approximately equal size, which can be used to break up the data for
 distributed tasks like mapreduces.

 The elements in the iterator are a SampleRowKeys response and they have
 the properties ``offset_bytes`` and ``row_key``. They occur in sorted
 order. The table might have contents before the first row key in the
 list and after the last one, but a key containing the empty string
 indicates "end of table" and will be the last response given, if
 present.

 .. note::

 Row keys in this list may not have ever been written to or read
 from, and users should therefore not make any assumptions about the
 row key structure that are specific to their use case.

 The ``offset_bytes`` field on a response indicates the approximate
 total storage space used by all rows in the table which precede
 ``row_key``. Buffering the contents of all rows between two subsequent
 samples would require space roughly equal to the difference in their
 ``offset_bytes`` fields.

 :type timeout_seconds: int
 :param timeout_seconds: Number of seconds for request time-out.
 If not passed, defaults to value set on table.

 :rtype: :class:`grpc.framework.alpha._reexport._CancellableIterator`
 :returns: A cancel-able iterator. Can be consumed by calling ``next()``
 or by casting to a :class:`list` and can be cancelled by
 calling ``cancel()``.
 """
 request_pb = data_messages_pb2.SampleRowKeysRequest(
 table_name=self.name)
 timeout_seconds = timeout_seconds or self.timeout_seconds
 response_iterator = self.client.data_stub.SampleRowKeys(
 request_pb, timeout_seconds)
 return response_iterator

def _create_row_request(table_name, row_key=None, start_key=None, end_key=None,
 filter=None, allow_row_interleaving=None, limit=None):
 """Creates a request to read rows in a table.

 :type table_name: str
 :param table_name: The name of the table to read from.

 :type row_key: bytes
 :param row_key: (Optional) The key of a specific row to read from.

 :type start_key: bytes
 :param start_key: (Optional) The beginning of a range of row keys to
 read from. The range will include ``start_key``. If
 left empty, will be interpreted as the empty string.

 :type end_key: bytes
 :param end_key: (Optional) The end of a range of row keys to read from.
 The range will not include ``end_key``. If left empty,
 will be interpreted as an infinite string.

 :type filter: :class:`.row.RowFilter`, :class:`.row.RowFilterChain`,
 :class:`.row.RowFilterUnion` or
 :class:`.row.ConditionalRowFilter`
 :param filter: (Optional) The filter to apply to the contents of the
 specified row(s). If unset, reads the entire table.

 :type allow_row_interleaving: bool
 :param allow_row_interleaving: (Optional) By default, rows are read
 sequentially, producing results which are
 guaranteed to arrive in increasing row
 order. Setting
 ``allow_row_interleaving`` to
 :data:`True` allows multiple rows to be
 interleaved in the response stream,
 which increases throughput but breaks
 this guarantee, and may force the
 client to use more memory to buffer
 partially-received rows.

 :type limit: int
 :param limit: (Optional) The read will terminate after committing to N
 rows' worth of results. The default (zero) is to return
 all results. Note that if ``allow_row_interleaving`` is
 set to :data:`True`, partial results may be returned for
 more than N rows. However, only N ``commit_row`` chunks
 will be sent.

 :rtype: :class:`data_messages_pb2.ReadRowsRequest`
 :returns: The ``ReadRowsRequest`` protobuf corresponding to the inputs.
 :raises: :class:`ValueError <exceptions.ValueError>` if both
 ``row_key`` and one of ``start_key`` and ``end_key`` are set
 """
 request_kwargs = {'table_name': table_name}
 if (row_key is not None and
 (start_key is not None or end_key is not None)):
 raise ValueError('Row key and row range cannot be '
 'set simultaneously')
 if row_key is not None:
 request_kwargs['row_key'] = _to_bytes(row_key)
 if start_key is not None or end_key is not None:
 range_kwargs = {}
 if start_key is not None:
 range_kwargs['start_key'] = _to_bytes(start_key)
 if end_key is not None:
 range_kwargs['end_key'] = _to_bytes(end_key)
 row_range = data_pb2.RowRange(**range_kwargs)
 request_kwargs['row_range'] = row_range
 if filter is not None:
 request_kwargs['filter'] = filter.to_pb()
 if allow_row_interleaving is not None:
 request_kwargs['allow_row_interleaving'] = allow_row_interleaving
 if limit is not None:
 request_kwargs['num_rows_limit'] = limit

 return data_messages_pb2.ReadRowsRequest(**request_kwargs)

 © Copyright 2015, Google.
 Created using Sphinx 1.3.1.

_static/down.png

_static/ajax-loader.gif

_static/comment-close.png

_static/up.png

_static/comment-bright.png

_static/file.png

